
Elucidating the genetic and non-genetic determinants 
of human complex diseases represents one of the prin-
cipal challenges of biomedical research. In recent years, 
genome-wide association studies (GWASs) have uncov-
ered >800 SNP associations for more than 150 diseases 
and other traits1. Although the complete genetic basis 
is not yet known for any human complex disease, rese-
quencing of exomes — and ultimately whole genomes 
— holds promise for identifying most of the causal 
genetic variations. However, there is now increas-
ing interest in exploring how non-genetic variation, 
including epigenetic factors, could influence complex 
disease aetiology2–4.

The epigenome of a cell is highly dynamic, being 
governed by a complex interplay of genetic and envi-
ronmental factors5. Normal cellular function relies on 
the maintenance of epigenomic homeostasis, which 
is further highlighted by numerous reported associa-
tions between epigenomic perturbations and human 
diseases, notably cancer4. However, most studies of 
such associations to date have been performed either 
with inadequate genome coverage (for example, tens to 
hundreds of loci) but adequate sample size, or with cov-
erage that is closer to being genome-wide (thousands 
of loci) but inadequate sample size. Consequently, for 
any human complex disease, we remain unaware of the 
proportion of phenotypic variation that is attributable 
to inter-individual epigenomic variation. This prob-
lem can only be elucidated by large-scale, systematic 
epigenomic equivalents of GWASs — epigenome-wide 

association studies (EWASs), as first proposed in 2008 
(REF. 6). At least for DNA methylation (DNAm), tech-
nology is now available that is directly comparable in 
resolution and throughput to the highly successful 
GWAS chips that allow genotyping of around 500,000 
(500K) SNPs.

But how does one conduct an EWAS? In addition to 
considerations that are common to both GWASs and 
EWASs (for example, adequate technology and sam-
ple size), the design of EWASs has specific considera-
tions with respect to sample selection. DNAm patterns 
are specific to tissues and developmental stages, and 
they also change over time. Furthermore, EWAS asso-
ciations can be causal as well as consequential for the 
phenotype in question — a difference from GWASs 
that presents considerable challenges. Here, we dis-
cuss these considerations in the context of designing 
and analysing an effective EWAS, keeping in mind that 
EWASs are likely to evolve, much like GWASs did, as 
information and experience accumulate.

Epigenetic variation and complex disease
Types of epigenetic information. Epigenetic informa-
tion in mammals can be transmitted in multiple forms5, 

including mitotically stable DNAm, post-translational 
modifications of histone proteins and non-coding 
RNAs (ncRNAs). For DNAm, the predominant form 
is methylation of cytosines in the context of cytosine–
guanine dinucleotides (CpGs). However, recent results 
suggest that CpH methylation (where H = C/A/T) 

*Blizard Institute of Cell and 
Molecular Science, Barts  
and The London School of 
Medicine and Dentistry, 
Queen Mary, University of 
London, 4 Newark Street, 
London E1 2AT, UK.
‡Wellcome Trust Cancer 
Research UK Gurdon Institute 
and Department of Genetics, 
University of Cambridge, 
Tennis Court Road, 
Cambridge CB2 1QR, UK.
§Genetics Institute, University 
College London, Darwin 
Building, Gower Street, 
London WC1E 6BT, UK.
||UCL Cancer Institute, 
University College London,  
72 Huntley Street,  
London WC1E 6BT, UK.
Correspondence to V.K.R., 
D.J.B. and S.B.  
e-mails: v.rakyan@qmul.ac.uk; 
d.balding@ucl.ac.uk;  
s.beck@ucl.ac.uk.
doi:10.1038/nrg3000 
Published online 12 July 2011

Epigenome-wide association studies 
for common human diseases
Vardhman K. Rakyan*, Thomas A. Down‡, David J. Balding§ and Stephan Beck||

Abstract | Despite the success of genome-wide association studies (GWASs) in 
identifying loci associated with common diseases, a substantial proportion of the 
causality remains unexplained. Recent advances in genomic technologies have placed 
us in a position to initiate large-scale studies of human disease-associated epigenetic 
variation, specifically variation in DNA methylation. Such epigenome-wide association 
studies (EWASs) present novel opportunities but also create new challenges that are 
not encountered in GWASs. We discuss EWAS design, cohort and sample selections, 
statistical significance and power, confounding factors and follow-up studies.  
We also discuss how integration of EWASs with GWASs can help to dissect complex 
GWAS haplotypes for functional analysis.
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Box 1 | Definition of features known to vary in DNA methylation

This rapidly increasing list of features is not meant to be complete but 
intends to show the key loci and contexts in which DNA methylation (DNAm) 
is known to vary.

Methylation variable position (MVP). A CpG site that shows differential 
methylation — for example, between different disease states, as illustrated 
in the figure. Given recent findings on non-CpG methylation, potentially all 
Cs could be MVPs.

Differentially methylated region (DMR). A region of the genome at which 
multiple adjacent CpG sites show differential methylation. DMRs can occur 
in many different contexts, such as:
•	iDMR — imprinting-specific differentially methylated region

•	tDMR — tissue-specific differentially methylated region

•	rDMR — reprogramming-specific differentially methylated region

•	cDMR — cancer-specific differentially methylated region

•	aDMR — ageing-specific differentially methylated region.

Variably methylated region (VMR). These regions are defined by increased 
variability rather than gain or loss of DNAm.

Allele-specific methylation (ASM). These are positions or regions that vary in 
DNAm depending on the parent-of-origin, the presence of a polymorphism or 
as a result of a stochastic event.

Haplotype-specific methylation (HSM). This is a differentially methylated 
region that is defined by a set of co-inherited SNPs (a haplotype).

CpG islands (CGIs). These are regions enriched for CpG sites. Most CGIs are 
unmethylated in all cell types.

CGI shores. These are regions immediately adjacent to CGIs and display 
higher variation in DNAm than CGIs despite their lower density of CpG sites.

The figure shows different types of DNAm variation that can be identified 
with epigenome-wide association studies. The notation n is used to indicate 
the variable size of the regions shown. For the purpose of this simplified 
illustration, the cases and controls are assumed to have methylated or 
unmethylated CpG states only. Real samples will contain populations of 
different cells and hence display much more heterogeneous methylation 
levels across the full dynamic range between 0% and 100%.
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Genome-wide association 
studies
(GWASs). These are 
genome-wide studies that are 
designed to identify genetic 
associations with an observable 
trait, disease or condition,  
such as diabetes.

Exome
The part of a genome that 
encodes exons for translation 
into proteins.

may be more common than previously appreciated7,8. 
Catalysed by the ten-eleven translocation (TET) 
methylcytosine dioxygenases, 5-hydroxymethylation9,10 
of cytosines (hmC) is yet another form of DNAm. 
Although details are still unclear, increasing evidence 
suggests a role of hmC in gene regulation and differ-
entiation11. Histone modifications include, to name 
but a few, mono-, di- or trimethylation, acetylation 
and citrullination of one or more amino acids in the 
amino-terminal tails of core histones5. More recently, it 
has been discovered that ncRNAs can self-propagate 
and be transmitted independently of the underlying 
DNA; in other words, they can ‘epigenetically’ trans-
mit regulatory information12,13. Such ncRNAs include 
short microRNAs (miRNAs), PIWI-interacting  
RNAs (piRNAs) and large intergenic non-coding RNAs 
(lincRNAs), among others12.

Epigenetic variation in health and disease. The full 
range of epigenetic marks is currently unknown but 
is potentially enormous, considering that the diploid 
human epigenome contains >108 Cs (of which >107 are 
CpGs) and >108 histone tails that can all potentially 
vary. The most studied epigenetic mark is DNAm, and 
BOX 1 discusses the most common features and contexts 
in which DNAm varies. DNAm variation at a single 
CpG site is known as a methylation variable position 
(MVP), which can be considered as the epigenetic 
equivalent of a SNP14. Very rarely, CpGs on only one of 
the two strands of DNA per allele are methylated. This 
is known as hemimethylation, and it probably reflects 
post-replication lag in DNAm maintenance in prolif-
erating cells. If DNAm is altered at multiple adjacent 
CpG sites, this is referred to as a differentially methyl-
ated region (DMR). DMRs vary considerably in length: 
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Epigenome
The complete collection of 
epigenetic marks, such as  
DNA methylation and histone 
modifications, and other 
molecules that can transmit 
epigenetic information, such as 
non-coding RNAs, that exist in 
a cell at any given point in time.

Core histones
The proteins that form  
the nucleosome, which is 
composed of two copies each 
of the histones 2A, 2B, 3  
and 4. Together, they form  
a histone octamer around  
which 147 bases of genomic  
DNA are wrapped.

Core promoters
Regions upstream and 
downstream of the 
transcriptional start site  
(TSS), typically defined as  
the interval –60 to +40  
bases from the TSS.

CpG islands
(CGIs). Regions of the genome 
(typically 500 bp–2 kb) that 
contain a higher than expected 
frequency of CpG sites.  
CGIs are frequently 
unmethylated and found  
near promoter regions.

Imprinted
This term refers to genes that 
are expressed in a parent-of-
origin-specific manner.

Loss-of-imprinting
(LOI). Parental imprinting 
results in the epigenetic 
silencing of one allele of a  
gene owing to its parental 
origin. Aberrant disruption  
of imprinting leads to both  
alleles being expressed;  
that is, loss-of-imprinting.

Satellite DNA
A type of non-coding, 
repetitive DNA that is a 
component of functional 
centromeres and the main 
structural constituent of 
heterochromatin.

Methylation quantitative 
trait loci
(methQTLs). DNA variants that 
influence the DNA methylation 
state either in cis or in trans.

Allele-specific methylation
(ASM). The presence of DNA 
methylation on only one of the 
two alleles present in a cell. 
This could be due to parental 
imprinting, random methylation 
of one allele or genetic effects.

they are typically <1 kb, but they can exceed 1 Mb15. 
Until recently, MVPs and DMRs were mostly studied 
in the context of core promoters, CpG islands (CGIs) and 
imprinted differentially methylated regions (iDMRs); 
however, it is becoming increasingly clear that DNAm 
is highly dynamic, even outside such regions. For 
example, a recent study found that tissue- and cancer-
specific DMRs preferentially occur in regions adjacent 
to CGIs — so-called CGI shores16. DNAm also has a 
key role in silencing repeat elements, which may also 
have an impact on disease aetiology17,18.

The role of DNAm variation in complex disease 
has mainly been explored in the context of cancer, in 
what may be considered as early EWASs. Findings from 
these studies have been extensively discussed4,19, the key 
general conclusions being that tumour development is 
associated with gain of DNAm at CGIs, loss-of-imprinting  
and epigenetic remodelling of repeat elements, par-
ticularly loss of DNAm at satellite DNA20,21. For non-
malignant, common complex diseases, such as diabetes 
or autoimmunity, the epigenetic component is only just 
beginning to be investigated. Observations that sup-
port the involvement of an epigenetic component in 
these diseases include the following. First, monozygotic 
twin concordance for any complex disease is almost 
never 100%. Recent small-scale EWASs of monozy-
gotic twins who are discordant for systemic lupus ery-
thematosus22 and autism-spectrum disorders23 have 
found disease-associated epigenetic differences within 
monozygotic pairs. Second, the incidence of several 
complex diseases — such as type 1 diabetes24 — is rising 
in the general population and is frequently altered in 
migrant populations, suggesting a role for non-genetic  
factors. Third, epidemiological evidence suggests that 
a suboptimal in utero or early childhood environment 
can have an impact on disease outcomes (such as 
type 2 diabetes) in adulthood, a phenomenon termed 
‘developmental reprogramming’ (REF. 25). Currently,  
the prime candidate for the molecular memory  
of the in utero environment is epigenetic modifications,  
including DNAm26–28.

Epigenetic variation as a consequence or cause of  
disease. As mentioned above, epigenetic variation can 
be causal for disease or can arise as a consequence of 
disease. Epigenetic variation could arise, either directly 
or indirectly, as a consequence of disease — examples 
of this could include long-term alterations in immune-
related cells in autoimmune disorders, altered metabolic 
regulation in type 2 diabetes or somatic-mutation-
induced epigenetic alterations in cancer. However, 
distinguishing this from epigenetic variation that is 
causative of the disease process is not straightforward 
(as we discuss in greater detail below), but is never-
theless crucial; this is because it will help to elucidate 
the functional role of the disease-associated varia-
tion and its potential utility in terms of diagnostics or 
therapeutics. A key step towards achieving this goal is 
to determine whether the variation is present prior to  
any overt signs of disease. In this regard, it is useful 
to consider how such epigenetic variation could arise 

prior to disease. First, it could be inherited and hence 
be present in all tissues including the germ line (that is, 
transgenerational epigenetic inheritance), although the 
extent of this phenomenon is not fully known. Second, 
it could arise stochastically and be present soma-wide 
if it happens in early (for example, in utero) develop-
ment29,30, or it could be limited to one or a few tissues31,32 
if it were to happen postnatally or during adult life. 
Third, it could be environmentally induced, either by 
adult lifestyle-related factors, such as diet or smoking33, 
or even in utero; that is, developmental reprogramming 
(described above).

It is also possible that the underlying genotype influ-
ences epigenetic variation, as recently demonstrated 
by several studies34–39. Loci harbouring genetic vari-
ants that influence methylation state have been termed 
methylation quantitative trait loci (methQTLs)34. In most 
methQTLs, the correlations with cis-genotype are the 
most pronounced ones. There is some evidence that 
genetic variation can also influence epigenetic states in 
trans, but this does not seem to be as prevalent as cis-
effects38. Also, it is important to note that, in most of 
these previous studies, the true causative genetic variant 
was not unequivocally identified, and most methQTLs 
did not demonstrate a strict one-to-one relationship 
between the cis-genotype and the epigenotype; rather, a 
specified genotype generates an increased probability of 
methylation. Feinberg and Irizarry2 have recently argued 
for the existence of genetic variants in mouse and human 
genomes that do not change the mean phenotype but 
rather the variability of phenotype; this could be medi-
ated epigenetically through variably methylated regions 
(VMRs, see BOX 1). The existence of methQTLs provides 
a strong argument for integrated GWASs and EWASs 
to uncover genotypes that exert their function through 
epigenetic variation (discussed later).

These methQTLs can also affect allele-specific methylation  
(ASM, see BOX 1). In this context, the steady-state meth-
ylation levels differ across the two alleles within the same 
cell. However, ASM can also occur in the absence of any 
specific genotype–epigenotype correlations. For exam-
ple, parental imprinting, X-chromosome inactivation 
and random monoallelic methylation of one allele are 
all instances of ASM that are not caused by differences 
in the underlying genotype between methylated and 
unmethylated alleles.

Finally, it is also worth considering the possibility 
that, in some cases, disease-associated epigenetic vari-
ation could arise prior to disease onset but may not be 
causative for the disease per se. This type of epiphenom-
enon could be due to confounding, in which an envi-
ronmental factor (such as smoking) or a genetic variant 
induces both aberrant epigenetic states and disease.

These potential relationships between epigenetic 
variation and complex disease have important implica-
tions for the design and analysis of EWASs. First, they 
will determine the most relevant tissue and cell types 
to be sampled. Second, reverse causation and confound-
ing are particular issues for EWAS design. Despite the 
considerable evidence of epigenetic perturbations in 
cancer4 and emerging evidence in other non-malignant 
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Reverse causation
Refers to an association 
between A and B that is due  
to B causing A rather than  
the presumed A causing B.

Methylation-sensitive 
restriction enzyme digestion
Procedure that cleaves dsDNA 
depending on the methylation 
status of the enzyme’s 
recognition site. Some 
enzymes only cleave when the 
recognition site is methylated 
and others only when the site 
is unmethylated.

Affinity enrichment
In this context, this term  
refers to a procedure to enrich 
methylated DNA fragments 
from a pool of methylated  
and unmethylated fragments 
using affinity reagents such  
as antibodies against 
5-methylcytosine or other 
methyl-binding proteins.

RRBS
(Reduced representation 
bisulphite sequencing).  
A procedure for single  
base resolution methylation 
analysis using bisulphite DNA 
sequencing of a representative 
part of a genome,  
typically 5–10%.

diseases22,23,40–42, none of these studies has been able to 
conclusively distinguish causal from consequential epige-
netic variants: a problem that has long been recognized43. 
Although any EWAS association with disease is poten-
tially an advance, being able to identify the direction of 
causality will greatly aid in determining the usefulness  
of epigenetic variation as, for example, a marker of dis-
ease progression, a target for reversal by treatment with 
an epi-drug (that is, a drug that has an effect on the epi-
genome), or a measure of drug response by monitoring  
the kinetics of drug-induced epigenetic changes.

Profiling epigenetic variation
One of the major developments that enabled large-
scale GWASs was the introduction of powerful but 
affordable genetic profiling technologies, in particular 
SNP arrays. Only recently have epigenomic profiling 

technologies reached the stage at which large-scale 
EWASs are becoming feasible. For such studies to be 
possible, the mark or molecule must be stable, amena-
ble to high-throughput analysis and easily accessible in 
routine clinical samples. Automatable whole-genome 
profiling methods must also be available. Currently, 
DNAm (and specifically CpG methylation) is the most 
suitable mark for EWASs. Other epigenetic marks may 
be just as important as DNAm (or more so) but are, as of 
yet, neither as easily accessible in clinical specimens nor 
as amenable to high-throughput processing. In addi-
tion, there are numerous well-established correlations 
between different epigenetic marks and hence profiling 
DNAm can, albeit indirectly, provide information about 
histone modification states and RNA dynamics5.

In principle, sequencing- and array-based profiling 
technologies can be used for EWASs. The most common 

Box 2 | Profiling technologies for epigenome-wide association studies

Lack of suitable technology has been a major bottleneck for epigenome-wide association studies (EWASs) in the past. 
Fortunately, this is no longer the case and a variety of both array- and sequencing-based methods are now readily 
available. As these have already been extensively reviewed44,47,80 and benchmarked45,46,81,82, they are only briefly 
described here along with some additional technologies that may also be suitable for EWASs as guidance for the 
variety of choices available.

Array-based technologies
•	CHARM (comprehensive high-throughput relative methylation)83. This technique uses methylation-sensitive 

restriction enzymes.

•	Infinium84. This assay uses two different bead types (for methylated and unmethylated DNA) to detect CpG methylation 
of bisulphite treated DNA. It also uses chemical conversion of DNA.

Technologies that can be used in conjunction with arrays (chip) or sequencing (seq)
•	HELP–chip/seq (HpaII tiny fragment enrichment by ligation-mediated PCR combined with arrays or sequencing)85.  

This technique uses methylation-sensitive restriction enzymes.

•	MethylCap–chip/seq (methyl capture using the methyl binding domain of protein MeCP2 combined with arrays or 
sequencing)86. This technique uses affinity enrichment.

•	MBD–chip/seq (methyl capture using complex of methyl binding proteins MBD2 and MBD3L1 combined with arrays or 
sequencing)87,88. This technique uses affinity enrichment.

•	MeDIP–chip/seq (methylated DNA immunoprecipitation with antibody against 5-methylcytosine combined with arrays 
or sequencing)89,90. This technique uses affinity enrichment.

Sequencing-based technologies
•	Whole-genome BS-seq (bisulphite sequencing)8. This technique uses chemical conversion of DNA.

•	RRBS (reduced representation bisulphite sequencing)91. This technique uses chemical conversion of DNA.

Choice of profiling technologies
Of these, the BS-seq approach — bisulphite conversion of randomly fragmented DNA followed by sequencing — 
provides the highest level of coverage and resolution, negligible bias towards CpG dense regions and a direct readout 
of non-CpG methylation92,93. Like all methods based on bisulphite conversion, BS-seq is not capable of distinguishing 
between methylated and hydroxymethylated cytosine bases94. Except for the reduced representation method (RRBS), 
which provides 5–10% genome coverage, whole-genome BS-seq is currently too expensive for EWAS profiling, 
although costs keep falling rapidly. Affinity-based enrichment methods such as MeDIP–, MethylCap– and MBD–chip/seq 
are more economical and highly automatable95 but are less quantitative and do not provide single-base resolution.  
In our view, the recently released Infiumium 450K BeadArrays seem well suited for EWAS profiling with respect to 
throughput, cost, resolution and accuracy. However, like other non-sequencing-based methods, the readout of this 
assay is susceptible to certain polymorphisms that were not known or considered at the time the array was designed.

Of course, the trade-off with all of these methods is that many CpG sites are not profiled. As there is no epigenomic 
equivalent of the HapMap project, which helped to elucidate some of the genetic variation in the human genome77,78, 
we are not aware of the level of normal epigenetic variation that exists in human populations or even which sites are 
the most relevant for disease aetiology. A true understanding of complex-disease epigenomics will therefore only be 
realized when whole-genome methods become more affordable, possibly using techniques such as nanopore96 and 
single-molecule real-time97 sequencing: methods that are currently being developed. These will allow direct (that is, 
no bisulphite, restriction or enrichment modifications required) and simultaneous determination of DNA methylation, 
DNA hydroxymethylation and DNA sequence in a single reaction.
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platforms of these two technologies have been exten-
sively reviewed44 and independently benchmarked45,46 

and are listed in BOX 2. As is typical for this type of 
study, the choice comes down to balancing coverage, 
resolution, accuracy, specificity, throughput and cost47. 
Ultimately, sequencing-based technologies are likely to 
prevail, but array-based methods (such as those used 
for GWASs) are, in our view, currently the most suitable 
methods for EWASs. As described in BOX 2, there are 
options for custom and off-the-shelf platforms cover-
ing the choices described above. Of these, the recently 
released Illumina 450K Infinium Methylation BeadChip 
seems to be, in our opinion, the most promising for the 
first wave of EWASs, offering a good balance of genome-
wide coverage (>450K CpG sites), resolution (single base 
pair) and throughput (12 samples per chip and up to 96  
samples per run).

Study designs for EWASs
In this section, we discuss the most informative study 
designs for EWASs with respect to types of study subjects 
and addressing the issue of reverse causation. FIGURE 1 
illustrates some of the advantages and disadvantages of 
the four examples discussed.

Retrospective (case–control). The most commonly used 
GWAS design involves unrelated individuals recruited 
on the basis of their phenotype (for example, cases and 
controls). Many case–control samples are already avail-
able, in some cases with genotype and expression data 
that can be integrated with epigenomic data. However, a 
retrospective study cannot determine whether the iden-
tified epigenetic variants are due to disease-associated 
genetic differences, post-disease processes or disease-
associated drug interventions. Early examples of using 

case–control studies to identify associations between 
epigenetic variation and clinically relevant phenotypes 
have included studies on metabolic dysfunction48 and 
treatment with tamoxifen49.

Parent–offspring pairs. These could be useful in EWASs 
that aim to identify transgenerational transmission of 
epigenetic marks (BOX 3). It has recently been demon-
strated that feeding F0 generation male mice either a 
high-fat or low-protein diet from weaning to the time of 
mating results in F1 offspring with altered metabolic phe-
notypes28,50. Given that sperm pass on very little, if any, 
cytoplasmic material to the offspring, these examples 
suggest the transgenerational transmission of epigenetic 
variants induced by the suboptimal diet of the F0 males. 
A similar strategy using epigenomic profiling of parent–
offspring trios could be used in humans. For example, 
if there is evidence to suggest that paternal environ-
ment influences phenotypic outcomes in the offspring, 
one could perform integrated epigenomic and genomic 
profiling in the offspring to identify altered epigenetic 
variants. The genetic information could then be used to 
eliminate the possibility that genetic modifiers are caus-
ing the epigenetic variation. Such study designs will need 
to use profiling methods that are able to detect allele-
specific differences, will need to be adequately pow-
ered and will need to have reliable measures of parental  
environmental exposures.

Monozygotic twins. Monozygotic twins who are dis-
cordant for a disease of interest represent a useful 
resource for EWASs, as any identified disease-associated 
epigenetic variant cannot be caused by germline genetic 
variation32,51. However, unless the twins are recruited 
longitudinally, which is rarely possible, these studies 
cannot be used to distinguish between cause and conse-
quence for the reasons discussed earlier. Recruiting large 
numbers of discordant monozygotic twins for a well-
powered study is a potential problem, but some large 
twin resources are available (see Further information).

Longitudinal cohorts. Longitudinal cohort designs fol-
low initially disease-free people (ideally from birth) over 
the course of many years, recording disease events and 
other phenotypic changes and taking biological samples. 
They are expensive to establish, but many such studies 
are already underway, some of which involve appropriate 
tissues for EWASs (see Further information). For exam-
ple, the British 1946 birth cohort52 offers samples and 
data spanning 65 years (so far) for over 5,000 individu-
als. Two major advantages of such studies, compared 
with many case–control designs, are the avoidance of 
confounding due to differences in the recruitment  
of cases and controls and of bias due to case–control dif-
ferences in the measurement of risk factors. Longitudinal 
studies can also be invaluable for establishing the tempo-
ral origins and stability of disease-associated epigenetic 
variation, thereby helping to distinguish causal epige-
netic variants from consequential ones. If environmental 
influences are also recorded, it may be possible to relate 
these to epigenetic changes.

Figure 1 | The different types of sample cohorts that could be used in an 
epigenome-wide association study. Refer to the main text for a full discussion.
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Longitudinal cohorts of disease-discordant monozy-
gotic twins would convey the additional advantage of 
ruling out genetic influences on disease-associated epi-
genetic variation, but such cohorts are rarely available 
for EWASs of common diseases. A compromise two-
phase study design is discussed below, which involves 
a disease-discordant monozygotic-twin cohort for the 
discovery phase and a different longitudinal cohort for 
the replication phase.

Choice of tissue for EWASs
In GWASs, most tissue types are suitable for identify-
ing germline genetic variation and DNA extracted from 
patient blood- or blood-cell-derived cell lines is usually 
used. However, disease-associated epigenetic variation 
can be tissue-specific. As most EWASs use live individu-
als, DNA samples can only be easily accessed from certain 
sources, such as blood, buccals, saliva, hair follicles, urine 
and faeces. Blood and blood subtypes, for instance, are 
relevant for autoimmune diseases or blood-based can-
cers, and any tissue will suffice if the epigenetic variant is 
present soma-wide (as will be the case if induced during 
developmental reprogramming in early embryogenesis).

However, for many diseases, alternative tissue sources 
need to be explored. These could include assaying cell-
free serum DNA — comprising DNA from proliferating 
cells that is shed into the blood (as happens for most 
cancers) — or post-mortem DNA, although the latter is 
a less suitable choice if the aim is to establish causality. 
In fact, until epigenomic profiling can be routinely per-
formed in a non-invasive manner (for example, through 
imaging techniques53) and/or using small tissue biop-
sies54, it will remain challenging to perform effective 
EWASs for brain-based and certain other diseases.

Another important issue is tissue heterogeneity.  
All tissues are composed of multiple cell types (for 
example, blood contains >50 distinct cell types). If the 

disease-associated variation is restricted to a certain cell 
type that represents only a small proportion of the tis-
sue sampled, then the variation may not be detected. The 
disease state itself can also alter the composition of cell 
types in a tissue (for example, inflamed tissue will have 
a slightly different composition of cell types from non-
inflamed tissue). Hence measured epigenetic differences 
between cases and controls may only reflect differences in 
cell-type composition and not true epigenetic differences.

Finally, blood-spot (or Guthrie) cards are another 
valuable source of DNA. These are routinely created in 
many developed countries immediately after birth using 
either cord- or heel-prick blood. Biobanks that include 
DNA and possibly other tissue, as well as phenotypic 
information, have been set up in several countries (see 
Further information).

Examples of EWAS design
There is not a single EWAS design that will suit all  
purposes; rather, the most suitable design depends  
on the required outcome. This is best demonstrated in 
the form of two hypothetical examples from the many  
possible EWAS designs that could be conducted.

An EWAS for disease-risk epigenetic markers. Let us 
assume that we are interested in identifying DNAm 
variants that arise prior to the onset of an autoimmune 
disease. We could start by performing genome-wide 
DNAm analysis of monozygotic twins who are discord-
ant for the disease to identify disease-associated MVPs 
in immune-effector cells (that is, a disease-relevant 
blood-cell subset) that cannot be due to genetic varia-
tion. We could then take these MVPs and assay them in 
the same type of immune-effector cells from a prospec-
tive cohort to look at DNAm at these sites in unrelated 
individuals who were sampled both before and after 
disease onset. Any MVPs that can be validated prior  
to disease onset are then candidate causal variations 
and cannot be attributed to post-disease effects, such as 
long-term medication or immune-related effects. Key 
follow-up studies could include correlation with gene 
expression and other epigenetic marks to investigate the 
affected pathways. Overall, this EWAS design combines 
analysis of a disease-relevant tissue from two independ-
ent cohorts that allow for discovery and validation of 
MVPs and elimination of various confounding factors.

An EWAS for drug–response epigenetic markers. Several 
cancer studies have identified epigenetic variants that 
can potentially be used to monitor disease progression 
and even response to treatment4. Some of these variants 
were detected by assaying DNA shed by the primary 
tumour into the patient’s serum, hence providing a rela-
tively straightforward means of assessing progression55. 
An EWAS could also measure the DNAm state in serum 
from singleton patients who suffer from a specified form 
of cancer prior to, during and following drug treatment. 
This could potentially identify epigenetic markers that 
predict the best response to treatment in real time. The 
root cause of the cancer-associated epigenetic variants 
(that is, genetic or environmental) need not be known, 

Box 3 | Transgenerational epigenetic inheritance

In mammals, epigenetic states are extensively reprogrammed between generations, 
and this is associated with the reinstatement of the pluripotent state that exists in 
early development. However, a few studies have shown that epigenetic states are 
occasionally not completely reprogrammed, resulting in the transgenerational 
transmission of epigenetic states. The strongest evidence for this phenomenon in 
mammals comes from various mouse models such as Avy, and AxinFu (REFS 29,30).  
In these models, the characteristic phenotype is associated with DNA methylation 
variation at the relevant locus. Interestingly, these states are not always completely 
reprogrammed between generations, thereby resulting in the range of phenotypes in 
the offspring being influenced by the phenotype of the parent, even in the absence of 
genetic heterogeneity. Establishing transgenerational epigenetic inheritance in 
humans is a far more challenging task, as the outbred nature of human populations 
means that it is difficult to distinguish true epigenetic inheritance from the inheritance 
of genetic variants that determine variable epigenetic states. Nevertheless, several 
reports suggest that transgenerational epigenetic inheritance in humans may occur.  
If this is true, then we may need to reconsider whether some estimates of heritability 
are confounded by transgenerational epigenetic inheritance. For example, a specific 
epigenetic state may be induced in the germ line by environmental factors, such as 
diet, and these states are passed on to the next generation, ultimately influencing 
phenotypic outcomes98. Indeed, it has recently been demonstrated in rats that a 
high-fat diet in fathers alters β-islet function in the daughters28. The true extent of this 
phenomenon is expected to become clearer in the coming years.
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nor would the primary tumour need to be directly 
analysed, for the variant to be an effective measure of  
progression or response.

Statistical considerations for EWASs
Sample size and power. In 2005, just as the GWAS wave 
was about to break, Wang et al.56 published an influen-
tial Review arguing for large sample sizes to detect small 
effects, and they highlighted the role of both minor allele 
frequency (MAF) and effect size in determining the 
power of a test of SNP association. They also discussed 
predictions from population genetics theory of the MAF 
spectrum over SNPs within a population and the (lim-
ited) theory and data to predict effect size distributions. 
The corresponding arguments are no less compelling for 
EWASs, but the relevant parameters are even more diffi-
cult to predict because of the paucity of data and relevant 
theory. DNA alleles do not typically vary across cells and 
can now be typed with low error rates. By contrast, meth-
ylation states may be tissue-specific and can vary over 
cells within a tissue, over alleles within a cell (ASM) and, 
in rare cases, over DNA strands within an allele (hemi-
methylation). Thus, for a tissue sample from one indi-
vidual, the methylation state measured at a CpG site lies 
between zero and one, as it is an average over cells, alleles 
and strands and is further blurred by measurement error. 
Here, we use the limited available information about fre-
quency spectra of DNAm variants, and their effect sizes 
for common disease, to tentatively propose power cal-
culations under three scenarios. It remains unclear how 
realistic the proposed scenarios are, but we hope at least 
to stimulate further discussion and investigation into this 
important aspect of EWAS design.

A recent methylome analysis reported that, on aver-
age, 68% of CpG sites were methylated in human periph-
eral blood mononuclear cells57. There was great variation 
across genomic contexts: CpG sites in regions of high 
CpG density were almost always unmethylated, as were 
CGIs and 5′-UTRs. By contrast, 3′-UTRs, introns and 
repetitive elements were predominantly methylated. 
The rate of ASM was estimated to be between 0.3% and 
0.6% (more than that attributable to imprinting alone). 
Hemimethylation was found to be rare (<0.2%, which 
included non-CpG methylation and incomplete bisul-
phite conversion). The methylation spectrum was not 
symmetric: there were few sites close to being 100% 
methylated but almost entirely unmethylated sites were 
not uncommon.

In FIG. 2a,b, hypothetical methylation spectra for three 
different classes of individuals (‘methylated’, ‘intermediate’  
and ‘unmethylated’) have been combined to generate 
overall frequency spectra in cases and controls. These 
form the basis of the power simulations reported in 
TABLE 1. The difference in mean methylation rate between 
cases and controls provides a popular summary of effect 
size, but it does not reflect differences in variances or 
other features of the methylation spectrum. It also does 
not reflect the relative magnitude of methylation rates, 
whereas, if a rare epigenotype in controls is almost absent 
in cases, this is likely to be more important than the same 
difference of mean rates for a more common epigenotype.

Odds ratios are well-established measures of genetic 
effect sizes for binary phenotypes. If we regard the 
mean methylation rate at a site in cases (or controls) to 
represent the methylation probability for a randomly 
chosen DNA strand in the case (or control) tissue sam-
ples, then we can compute a methylation odds ratio 
(methOR). This methOR is the same as the ordinary 
odds ratio, except that the sampling unit is a DNA 
strand rather than an individual. Thus, the methOR is 
the odds for a random DNA strand in the tissue sam-
ple from a random case to be methylated, divided by 
the same odds for controls. This provides a measure of 
effect size that incorporates relative magnitudes but, 
like the mean difference in rates, it also does not allow 
for difference between cases and controls of features of 
the methylation spectrum, such as its variance. As for 
other odds ratios, methOR is comparable across pro-
spective and retrospective studies, and its value only 
measures association and does not imply causation.

TABLE 1 gives simulation-based power estimates for 
the three sets of methylation spectra from FIG. 2. They 
have similar methORs, although the case–control dif-
ferences in mean methylation rates are the same for a 
and b but not for c. The fact that the power values dif-
fer between a and b emphasizes that there is no single-
number measure of effect size, as power depends on 
the entire methylation spectrum in cases and controls. 
However, for the logistic regression analysis conducted 
in our simulations, methOR gives a better guide to 
power than the difference in rates. When methOR is 
around 1.25, a sample size of 800 cases + 800 controls 
is adequate to achieve 80% power at a significance level 
of α = 10–6 for scenario c but not a or b (see the next 
section for a discussion of genome-wide significance 
for EWASs). When methOR is around 1.5, a sample 
size of 400 + 400 gives 80% power at α = 10–6 for b and c  
but not a.

Little is currently known about actual differences in 
methylation spectra at epigenetic variants implicated  
in disease, and recommendations about sample size will 
need to evolve with emerging data. A recent report58 on 
the effects of smoking on methylation identified one 
strong association at a CpG site located in coagulation 
factor II (thrombin) receptor-like 3 (F2RL3), for which 
the median methylation rates were 95% for those who 
had never smoked and 83% for heavy smokers, giving a 
difference of 12% and methOR = 2.7. Methylation status 
was much less variable in those who had never smoked 
than in heavy smokers (interquartile ranges 0.94–0.96 
and 0.78–0.88, respectively). For such a strong effect, 
the sample size of 65 heavy smokers and 56 non-smok-
ers was adequate to detect the association. However, 
smoking is known to be among the most important 
environmental factors for health, so other effect sizes of 
interest are likely to be much smaller. If we regard 1.5 to 
be a target methOR value, then it would not seem to be 
cost-effective to pursue an EWAS with fewer than 400 
cases and 400 controls, and 800 of each would be prefer-
able to achieve good power. This is much less than the 
2,000 cases and controls that became the de facto stand-
ard minimum sample size for GWASs following the 
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Figure 2 | Hypothetical DNA methylation frequency spectra in cases and controls. Methylation states in controls (purple 
curve) and cases for four effect sizes (other curves) are shown under three scenarios. In panels a and b, numbers in the 
parentheses in the key show the proportions of individuals who are unmethylated, intermediate or methylated, respectively. 
The purple line shows controls and the other four lines show cases. The distributions of measured methylation states are 
assumed to follow the following beta distributions: unmethylated individuals have a beta(1.5,6) distribution, which has 
mean = 0.2 and sd = 0.14; intermediate individuals have a beta(2,2) distribution, which has mean = 0.50 and sd = 0.22; and 
methylated individuals have a beta(6,1.5) distribution, which has mean = 0.80 and  sd = 0.14. In c, the methylation spectrum 
is assumed to follow a single beta distribution for controls and each set of cases, and its parameters are shown in the key.

Bayesian
The two main statistical 
schools are the classical  
(or frequentist) school, which 
dominated twentieth century 
science and measures the 
strength of evidence against a 
hypothesis using P values, and 
the Bayesian school, which was 
developed in the nineteenth 
century but is currently 
undergoing a resurgence  
and attempts to compute the 
posterior probability that  
the hypothesis is true.

Wellcome Trust Case Control Consortium (WTCCC) 
study59, reflecting the fact that effect sizes for EWASs 
and GWASs are not directly comparable. It seems likely 
that effect sizes and hence power will vary substantially 
according to genomic context, in which case genome-
wide ranking by P values is unsatisfactory60 and Bayesian 
measures of support that take power into account are 
more appropriate. Currently, however, there remains lit-
tle information to inform Bayesian prior distributions 
of effect sizes.

Genome-wide significance. In GWASs, the establish-
ment of genome-wide thresholds for significance is com-
plicated by correlations between the genotyped SNPs61.  
In EWASs, there are analogous correlations among 
DNAm sites in DMRs, but these correlations typi-
cally extend to, at most, a few kilobases — although 

to date they have only been reported in non-disease 
contexts. Based on what has been discussed above on  
co-methylation, ASM and hemimethylation, most CpG 
methylation can be expected to be symmetric across 
strands and across alleles in somatic cells. Thus, the 
~28 million CpG sites in the haploid human genome 
correspond to substantially fewer independent meth-
ylation states, owing to correlation within DMRs and 
methylation symmetry. If a set of 500K CpG sites was 
evenly spaced, the average spacing between sites may 
be large enough to allow an assumption of independ-
ence. In such a case, a significance level α = 10–6 per site 
gives probability 0.36 of no false positives (type 1 error) 
under the null hypothesis, and this might be regarded 
as a liberal threshold for a possible EWAS association. If 
5 million CpG sites were assayed, we would expect five 
false positives under the null at this α-value. Correlation 
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Table 1 | Power simulations for epigenome-wide association studies

(Number of cases, number of controls)

(100,100) (200,200) (400,400) (800,800)

Scenario a

methOR = 1.24 md = 3.6% 0  0 0  0 1  0 20  3

methOR = 1.49 md = 7.2% 0  0 4  0 66  21 100  99

methOR = 1.78 md = 10.8% 2  0 55  11 100  98 100  100

methOR = 2.10 md = 14.4% 18  1 99  78 100  100 100  100

Scenario b

methOR = 1.24 md = 3.6% 0  0 0  0 2  0 33  8

methOR = 1.49 md = 7.2% 1  0 16  2 85  51 100  100

methOR = 1.78 md = 10.8% 13  1 84  46 100  100 100  100

methOR = 2.10 md = 14.4% 60  19 100  97 100  100 100  100

Scenario c

methOR = 1.27 md = 1.25% 1  0 7  1 50  19 98  88

methOR = 1.54 md = 2.5% 37  10 95  78 100  100 100  100

methOR = 1.82 md = 3.75% 95  77 100  100 100  100 100  100

methOR = 2.11 md = 5.0% 100  99 100  100 100  100 100  100

The data in this table show the power (%) to detect a methylation variable position (MVP) at significance level α = 10–6 (left entry  
in each cell) and α = 10–8 (right entry) for the stated sample sizes under scenarios a, b and c of FIG. 2. Analysis is via a Wald test in 
logistic regression implemented in the R software. md, difference in mean methylation rate between cases and controls; 
methOR, methylation odds ratio (the odds for a random DNA strand in the tissue sample from a random case to be methylated, 
divided by the same odds for controls). 

Principal coordinates
Analysis of principal 
coordinates is a multivariate 
statistical technique that  
is related to principal 
components analysis but 
investigates individuals rather 
than variables. It is often used 
to investigate population 
structure in a sample of 
individuals whose relatedness 
has been estimated from 
genome-wide genotype data.

among neighbouring sites means that a specific calcula-
tion is required to identify a stringent standard for epi-
genome-wide significance (global type 1 error <0.05), 
which will typically lie between 10–8 and 10–7.

Confounding in EWASs. GWASs can be affected by 
two sources of confounding. First, with retrospective 
ascertainment there is a risk of systematic differences 
between cases and controls in the handling or process-
ing of samples (known as technical confounding, which 
includes batch effects)62,63. Similar problems are possi-
ble for EWASs. Second, confounding can arise because 
the ancestry of cases differs systematically from that 
of controls (known as population structure and cryp-
tic relatedness)64. This causes confounding in GWASs 
because any polygenic contribution to disease causa-
tion is correlated with ancestry, and environmental 
exposures may also be correlated with ancestry (for 
example, owing to different geographic locations of 
ancestors). Whether ‘polyepigenetic’ effects exist seems 
unclear, but environmental exposures correlated with 
ancestry seem likely to affect epigenetic studies.

Unlike GWASs, environmental factors can also 
directly confound an EWAS by affecting both epigeno-
type and phenotype, which can inflate type 1 error and 
exaggerate effect size estimates. Potential confound-
ers, such as age65 and smoking behaviour, should be 
adjusted for in a regression analysis if this is possible. 
Even if a measured covariate is not a confounder but, 
for example, has an independent effect on phenotype, 
then adjusting for it can allow better delineation of the 
direct epigenetic effect.

Fortunately, the large numbers of SNPs in a GWAS 
allow many possibilities to detect and correct confound-
ing63, including genome-wide adjustment of association 
statistics, regression adjustment using principal coordinates  
and mixed regression models64. Similar methods 
are likely to be effective to detect and adjust for con-
founding in EWASs. For example, leading principle 
coordinates of genome-wide methylation states may 
encapsulate unmeasured confounders, so if these are 
also correlated with phenotype, then it may be appropri-
ate to include them as covariates in a regression analysis, 
as is common for GWAS analyses. Indeed, if GWAS data 
are also available on the EWAS individuals, it may be 
appropriate to adjust for leading principle coordinates 
of both genetic and epigenetic states.

Analysis of multi-stage studies. The values in TABLE 1 
assume a single-stage study but, as discussed above, the 
possibilities of confounding, of correlation with geno-
type and of reverse causation often argue for a two-stage 
study design; for example, by including a discordant 
monozygotic-twin stage followed by a longitudinal 
cohort stage. In simple settings, it is optimal if the sam-
ple size in each stage is inversely proportional to the 
square root of the cost per individual in that stage66. 
The question arises of whether the second stage should 
assay all the sites from the first stage or whether costs 
can be reduced by only assaying a limited set of ‘hits’ in 
stage two. Because of the relatively low cost of assaying 
all hits in stage two, and the additional information that 
is provided, this strategy seems generally preferable. The 
exception would be scenarios in which stage one is large 
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ChIP–seq
(Chromatin immunoprecipita-
tion followed by sequencing).  
A method for mapping the 
distribution of histone 
modifications and chromatin-
associated proteins genome 
wide that relies on immunopre-
cipitation with antibodies to 
modified histones or other 
chromatin proteins. The 
enriched DNA is sequenced to 
create genome-wide profiles.

enough to eliminate all but a handful of potential hits. 
In either case, broadly speaking, it is optimal to con-
duct a single joint analysis of results from both stages. 
If stage one involves monozygotic-twin pairs, a paired 
analysis may be appropriate (such as a paired t-test) if 
there is substantially more variation among twin pairs 
than within them. A combined two-sample case–con-
trol analysis is then not appropriate, but it is straightfor-
ward to combine test statistics from the two stages using 
standard meta-analysis techniques.

Replication for EWASs. Particularly in the early days 
of GWASs, replication of hits in an independent study 
was important in weeding out false positives that arose 
through technical or design flaws in the initial study. 
Arguably, GWAS design has improved to the extent that 
replication is less crucial now as there are many checks 
available on the quality of the primary study, but rep-
lication is still seen as highly desirable and is typically 
relatively easy to achieve. Ideally, replication should be 
carried out by an independent group of researchers stud-
ying the same polymorphism in the same population 
and with the same phenotype definition, but preferably 
using a different study design and different laboratory 
techniques. In practice, it is impossible to demand all of 
this, and what constitutes a satisfactory compromise is a 
matter of debate, although there are some broad points 
of consensus67. For EWASs, the same issues arise, and 
the issues of correlation with genotype and reverse cau-
sation should both be addressed in replicate analyses. 
Thus, a replication is potentially more demanding for 
EWASs than for GWASs, but limited availability of tis-
sue samples and study subjects mean that replication 
will be harder to achieve. As the EWAS field begins to 
develop, it would be inappropriate for reviewers and 
editors to impose overly strict replication requirements 
that are analogous to those used in the current mature 
phase of GWASs. In particular, we should avoid any 
encouragement for researchers to hold back samples or 
resources from the primary study in order to use them 
later to claim ‘replication’. Lessons should be learned 
from the GWAS experience: the primary study needs 
to be well-powered, and rigorous quality checks need to  
be imposed on the EWAS data. If replication is not 
immediately feasible, this should not preclude publica-
tion, but the need for further confirmation of results 
should be acknowledged. The appropriate level of toler-
ance of false positives from the primary study depends 
on several factors, including the costs of follow-up analy-
ses. If these costs are not too excessive, it may be opti-
mal to initially tolerate some false positives in order to  
minimize false negatives. The field of EWASs needs  
to develop in a similar fashion to GWASs, such that 
standards tighten over time as lessons are learnt from 
the accumulated experience of the research community.

Post-EWAS follow-up studies
The ultimate aim of EWASs, like GWASs, is to provide 
a better understanding of disease aetiology and to lead 
to the development of novel therapeutics and diagnos-
tics. Typical follow-up experiments to determine the 

aetiological role of disease-associated epigenetic varia-
tion could include correlation with other epigenetic mod-
ifications and collectively how they have an impact on 
gene expression. This could be achieved using ChIP–seq 
experiments, either for the many histone modifications 
known to correlate with DNAm68 or for transcription 
factors whose binding may be modulated — either 
positively or negatively — by methylation at their target 
sites69. If a large effect size can be determined for a sin-
gle site, then one could validate the link to the disease-
associated phenotype by modulating the expression of 
the gene in question either in in vitro systems or model 
organism studies. However, a more likely scenario is of 
many disease-associated epigenetic variants each confer-
ring only a small disease risk, as is suggested by the few 
small-scale EWASs conducted to date22,23,40–42. In this case, 
it may be more fruitful to use approaches that integrate 
both computational and experimental methodologies to 
look at perturbations of entire transcriptional networks. 
The issue of reverse causation is also important in post-
EWAS experiments, both in terms of which variants to 
follow-up and in terms of the experimental approaches.

Even if the aetiological role of any identified epige-
netic variant proves elusive, it may still be possible to 
use them as predictive biomarkers. In this regard, the 
combination of chemical stability and ontogenetic 
plasticity makes DNAm ideally suited as a biomarker. 
Translating any molecular marker, including DNAm 
differences, into clinically informative biomarkers has 
turned out to be more challenging70 than had been 
expected, but progress has been made. Following ear-
lier setbacks, a multi-centre study identified, validated 
and replicated hypermethylation at septin 9 (SEPT9) as 
a blood-based DNAm biomarker for colorectal cancer in 
2008 (REF. 71), leading to a commercial test in early 2010 
(REF. 72). However, enthusiasm is tempered with cau-
tion, as highlighted by the problems encountered by the  
cancer research community in identifying biomarkers 
that predict which patients would benefit from a particu-
lar therapy70. The main problem has been the inability 
to select patients with a molecularly well-defined dis-
ease phenotype owing to, in large part, the heterogene-
ity of cancer tissues. Molecular heterogeneity is also an 
issue for the common diseases that are being targeted by 
the first wave of EWASs, although it is expected to be a 
smaller problem than for cancer.

Based on this experience, a systematic approach, such 
as the recently launched OncoTrack project (see Further 
information), is needed to advance the field. Two bod-
ies in particular — the Biomarkers Consortium and the 
AACR–FDA–NCI Cancer Biomarkers Collaborative 
(a partnership between the American Association of 
Cancer Researchers (AACR), the US Food and Drug 
Administration (FDA) and the US National Cancer 
Institute (NCI)) — have recently issued a comprehensive 
report on the current state of affairs and future direc-
tions73. The response of the community has been posi-
tive, prompting calls such as “Bring on the biomarkers” 

(REF. 74) and pledges to replace the patchy framework 
of fragmented research with a coordinated ‘big sci-
ence’ approach (such as OncoTrack), which has proved 
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Bivalency
A property of chromatin  
that contains both activating 
and repressing epigenetic 
modifications at the same locus.

Multivariate hidden Markov 
analysis
A statistical method for 
modelling multidimensional 
data by one of a small number 
of hidden Markov states,  
each of which is associated 
with a multivariate  
probability distribution.

successful for efforts such as the human and cancer 
genome projects. Based on this and on other efforts, we 
can be cautiously optimistic that similar progress will 
also be made for epigenetic biomarkers.

Integration of EWASs and GWASs
The correlations that have been observed between 
genotype and epigenotype (methQTLs) are encour-
aging for the prospects of further integrated analysis. 
A recent study39 analysing SNPs, gene expression and 
DNAm in 77 HapMap cell lines identified SNPs that 
affect both gene expression and DNAm, thus providing 
evidence for shared genetic and epigenetic mechanisms 
affecting multiple QTLs. In this way, EWASs can be 
used to investigate genetic predispositions that exert 
their function through epigenetic mechanisms. One 
possible strategy involves the design of a custom array 
tiled across haplotypes identified by disease-associated 
GWAS SNPs, profiling it for differential DNAm and 
analysing the data stratified for risk SNPs rather than 
cases and controls. Using this strategy, a recent study75 
successfully integrated GWAS and EWAS data to iden-
tify haplotype-specific DNAm (HSM) in a type 2 dia-
betes and obesity susceptibility locus. In the future, it 
may well be possible to do similar analyses for addi-
tional and combinatorial epigenetic marks to capture 
certain chromatin disease states — for example, based 
on altered bivalency status — that are currently not eas-
ily captured by DNAm. Using multivariate hidden Markov 
analysis of recurrent and spatially coherent combina-
tions of epigenetic marks, a recent study76 reported 51 
distinct chromatin states for human T cells that look 
highly promising for possible integration with GWAS 
data of blood-based diseases.

Conclusions and future directions
The success of GWASs in identifying disease-associated 
genetic variations clearly warrants the development of 
complementary approaches for identifying additional 
variations that cannot be captured with GWASs. As 
outlined in this article, EWASs have the potential to 
do just that by capturing disease-associated epigenetic  
variations, such as differential DNAm.

The single most useful resource empowering GWASs 
was the availability of a detailed SNP map of the human 
genome77,78, which allowed the selection of so-called 
tag SNPs for comprehensive variation coverage and 
cost-efficient profiling. DNAm is correlated over tis-
sue-specific blocks of CpG sites spanning up to 1 kb79. 
Knowledge of this block structure for different tissues 
and cell types has and will continue to improve the selec-
tion of CpG sites for EWASs as new methylome maps  
become available. Currently, such high-resolution  
maps are available for human embryonic stem cells, fetal 
fibroblasts and peripheral blood monocytes8,57, inform-
ing potential EWASs on early developmental disor-
ders and blood-based diseases. As part of the recently 
launched International Human Epigenome Consortium 
(IHEC), 1,000 reference epigenomes (including methy-
lome maps) will be generated for human tissues and 
cell types over the coming years. In this context, these 
maps can be considered as the epigenetic equivalent to 
the human haplotype map and can be expected to sig-
nificantly accelerate and improve our ability to conduct 
EWASs for many common diseases.

In addition to improving study design — for which 
we have discussed the key issues in this Review — the 
main challenge for EWASs will be access to appropriate 
samples. A useful starting point would be to establish 
the proposed Biobank Central resource, which will allow 
researchers to electronically search for specific combi-
nations of samples and associated data as required for 
EWASs. Initiation of new birth and other longitudinal 
cohorts should also be encouraged and existing collec-
tions should ensure that samples are suitable for EWASs 
and related studies that are likely to require chroma-
tin (not just DNA) in the future. Finally, appropriately 
powered and designed EWASs need to be conducted to 
enable the development of tools for the analysis, inter-
pretation and integration of EWAS data. To achieve 
this will require close cooperation between scientists, 
clinicians, resource providers and funding agencies, as 
pioneered for GWASs. At the time of writing, the first 
wave of EWASs was still underway and an international 
conference has been arranged for later this year to  
discuss first results.

1. Hindorff, L. A. et al. Potential etiologic and functional 
implications of genome-wide association loci for 
human diseases and traits. Proc. Natl Acad. Sci. USA 
106, 9362–9367 (2009).

2. Feinberg, A. P. & Irizarry, R. A. Evolution in health and 
medicine Sackler colloquium: Stochastic epigenetic 
variation as a driving force of development, 
evolutionary adaptation, and disease. Proc. Natl Acad. 
Sci. USA 107 (Suppl. 1), 1757–1764 (2010).
This paper proposes a mechanism whereby genetic 
variants that do not change the mean phenotype 
could change the variability of the phenotype, 
which could be mediated epigenetically.

3. Petronis, A. Epigenetics as a unifying principle in the 
aetiology of complex traits and diseases. Nature 465, 
721–727 (2010).

4. Kulis, M. & Esteller, M. DNA methylation and cancer. 
Adv. Genet. 70, 27–56 (2010).

5. Bernstein, B. E., Meissner, A. & Lander, E. S.  
The mammalian epigenome. Cell 128, 669–681 (2007).

6. MacArthur, D. Why do genome-wide scans fail? 
Genetic Future [online], http://www.genetic-future.
com/2008/03/why-do-genome-wide-scans-fail.html 
(2008).

7. Ramsahoye, B. H. et al. Non-CpG methylation is 
prevalent in embryonic stem cells and may be 
mediated by DNA methyltransferase 3a. Proc. Natl 
Acad. Sci. USA 97, 5237–5242 (2000).

8. Lister, R. et al. Human DNA methylomes at base 
resolution show widespread epigenomic differences. 
Nature 462, 315–322 (2009).
This paper describes the first human methylome  
to be mapped at single-base resolution, 
demonstrating extensive DNAm at non-CpG sites  
in stem cells.

9. Kriaucionis, S. & Heintz, N. The nuclear DNA base 
5-hydroxymethylcytosine is present in Purkinje 
neurons and the brain. Science 324, 929–930 
(2009).

10. Tahiliani, M. et al. Conversion of 5-methylcytosine  
to 5-hydroxymethylcytosine in mammalian DNA  
by MLL partner TET1. Science 324, 930–935 
(2009).

11. Veron, N. & Peters, A. H. Epigenetics: Tet proteins in 
the limelight. Nature 473, 293–294 (2011).

12. Zaratiegui, M., Irvine, D. V. & Martienssen, R. A. 
Noncoding RNAs and gene silencing. Cell 128,  
763–776 (2007).

13. Rassoulzadegan, M. et al. RNA-mediated non-
mendelian inheritance of an epigenetic change in the 
mouse. Nature 441, 469–474 (2006).

14. Rakyan, V. K. et al. DNA methylation profiling of the 
human major histocompatibility complex: a pilot study 
for the human epigenome project. PLoS Biol. 2, e405 
(2004).
This is the first systematic study of DNAm profiles 
in the human genome.

15. Frigola, J. et al. Epigenetic remodeling in colorectal 
cancer results in coordinate gene suppression across 
an entire chromosome band. Nature Genet. 38,  
540–549 (2006).

16. Irizarry, R. A. et al. The human colon cancer 
methylome shows similar hypo- and hypermethylation 
at conserved tissue-specific CpG island shores. Nature 
Genet. 41, 178–186 (2009).

17. Edwards, J. R. et al. Chromatin and sequence features 
that define the fine and gross structure of genomic 
methylation patterns. Genome Res. 20, 972–980 (2010).

18. Fabris, S. et al. Biological and clinical relevance of 
quantitative global methylation of repetitive DNA 
sequences in chronic lymphocytic leukemia. Epigenetics 
6, 188–194 (2011).

R E V I E W S

NATURE REVIEWS | GENETICS  ADVANCE ONLINE PUBLICATION | 11

© 2011 Macmillan Publishers Limited. All rights reserved

http://en.wikipedia.org/wiki/BioBank_Central
http://www.wellcome.ac.uk/conferences/epigenomics
http://www.wellcome.ac.uk/conferences/epigenomics
http://www.genetic-future.com/2008/03/whydogenomewidescans-fail.html
http://www.genetic-future.com/2008/03/whydogenomewidescans-fail.html


19. Lechner, M., Boshoff, C. & Beck, S. Cancer epigenome. 
Adv. Genet. 70, 247–276 (2010).

20. Ting, D. T. et al. Aberrant overexpression of satellite 
repeats in pancreatic and other epithelial cancers. 
Science 331, 593–596 (2011).

21. Feber, A. et al. Comparative methylome analysis of 
benign and malignant peripheral nerve sheath tumors. 
Genome Res. 21, 515–524 (2011).

22. Javierre, B. M. et al. Changes in the pattern of DNA 
methylation associate with twin discordance in 
systemic lupus erythematosus. Genome Res. 20,  
170–179 (2010).

23. Nguyen, A., Rauch, T. A., Pfeifer, G. P. & Hu, V. W. 
Global methylation profiling of lymphoblastoid cell 
lines reveals epigenetic contributions to autism 
spectrum disorders and a novel autism candidate 
gene, RORA, whose protein product is reduced in 
autistic brain. FASEB J. 24, 3036–3051 (2010).

24. Bach, J. F. The effect of infections on susceptibility to 
autoimmune and allergic diseases. N. Engl. J. Med. 
347, 911–920 (2002).

25. Barker, D. J. Maternal nutrition, fetal nutrition, and 
disease in later life. Nutrition 13, 807–813 (1997).

26. Thompson, R. F. et al. Experimental intrauterine 
growth restriction induces alterations in DNA 
methylation and gene expression in pancreatic islets 
of rats. J. Biol. Chem. 285, 15111–15118 (2010).

27. Heijmans, B. T. et al. Persistent epigenetic 
differences associated with prenatal exposure to 
famine in humans. Proc. Natl Acad. Sci. USA 105, 
17046–17049 (2008).

28.  Ng, S. F. et al. Chronic high-fat diet in fathers 
programs beta-cell dysfunction in female rat offspring. 
Nature 467, 963–966 (2010).

29. Rakyan, V. K. et al. Transgenerational inheritance  
of epigenetic states at the murine AxinFu allele  
occurs after maternal and paternal transmission.  
Proc. Natl Acad. Sci. USA 100, 2538–2543 (2003).

30. Morgan, H. D., Sutherland, H. G., Martin, D. I. & 
Whitelaw, E. Epigenetic inheritance at the agouti 
locus in the mouse. Nature Genet. 23, 314–318 
(1999).

31. Fraga, M. F. et al. Epigenetic differences arise during 
the lifetime of monozygotic twins. Proc. Natl Acad. Sci. 
USA 102, 10604–10609 (2005).

32. Kaminsky, Z. A. et al. DNA methylation profiles in 
monozygotic and dizygotic twins. Nature Genet. 41, 
240–245 (2009).
These two papers represent key analyses of DNAm 
differences between monozygotic twin pairs. They 
provided first evidence for epigenetic metastability 
in humans that is unlikely to be explained by 
genetic heterogeneity.

33. Christensen, B. C. et al. Aging and environmental 
exposures alter tissue-specific DNA methylation 
dependent upon CpG island context. PLoS Genet. 5, 
e1000602 (2009).

34. Zhang, D. et al. Genetic control of individual 
differences in gene-specific methylation in human 
brain. Am. J. Hum. Genet. 86, 411–419 (2010).

35. Kerkel, K. et al. Genomic surveys by methylation-
sensitive SNP analysis identify sequence-dependent 
allele-specific DNA methylation. Nature Genet. 40, 
904–908 (2008).
This was the first genome-wide survey to establish 
sequence-dependent ASM to be a recurrent 
phenomenon outside imprinted regions. This 
finding has implications for mapping and 
interpreting associations of non-coding SNPs  
and haplotypes with human phenotypes.

36. Hellman, A. & Chess, A. Extensive sequence-
influenced DNA methylation polymorphism in  
the human genome. Epigenetics Chromatin 3, 11 
(2010).

37. Gibbs, J. R. et al. Abundant quantitative trait loci exist 
for DNA methylation and gene expression in human 
brain. PLoS Genet. 6, e1000952 (2010).

38. Shoemaker, R., Deng, J., Wang, W. & Zhang, K.  
Allele-specific methylation is prevalent and is 
contributed by CpG-SNPs in the human genome. 
Genome Res. 20, 883–889 (2010).

39. Bell, J. T. et al. DNA methylation patterns associate 
with genetic and gene expression variation in HapMap 
cell lines. Genome Biol. 12, R10 (2011).

40. Feinberg, A. P. et al. Personalized epigenomic 
signatures that are stable over time and covary  
with body mass index. Sci. Transl. Med. 2, 49ra67 
(2010).

41. Bell, C. G. et al. Genome-wide DNA methylation 
analysis for diabetic nephropathy in type 1 diabetes 
mellitus. BMC Med. Genomics 3, 33 (2010).

42. Mill, J. et al. Epigenomic profiling reveals DNA-
methylation changes associated with major psychosis. 
Am. J. Hum. Genet. 82, 696–711 (2008).

43. Baylin, S. & Bestor, T. H. Altered methylation patterns 
in cancer cell genomes: cause or consequence? Cancer 
Cell 1, 299–305 (2002).

44. Laird, P. W. Principles and challenges of genome-wide 
DNA methylation analysis. Nature Rev. Genet. 11, 
191–203 (2010).

45. Harris, R. A. et al. Comparison of sequencing-based 
methods to profile DNA methylation and identification 
of monoallelic epigenetic modifications. Nature 
Biotech. 28, 1097–1105 (2010).

46. Bock, C. et al. Quantitative comparison of genome-
wide DNA methylation mapping technologies. Nature 
Biotech. 28, 1106–1114 (2010).
These two papers benchmarked and compared  
six of the most commonly used methods for  
DNAm analysis.

47. Beck, S. Taking the measure of the methylome.  
Nature Biotech. 28, 1026–1028 (2010).

48. Ulrey, C. L., Liu, L., Andrews, L. G. & Tollefsbol, T. O. 
The impact of metabolism on DNA methylation.  
Hum. Mol. Genet. 14 (Suppl. 1), R139–R147 
(2005).

49. Widschwendter, M. et al. Association of breast cancer 
DNA methylation profiles with hormone receptor 
status and response to tamoxifen. Cancer Res. 64, 
3807–3813 (2004).

50. Carone, B. R. et al. Paternally induced 
transgenerational environmental reprogramming of 
metabolic gene expression in mammals. Cell 143, 
1084–1096 (2010).

51. Bell, J. T. & Spector, T. D. A twin approach to unraveling 
epigenetics. Trends Genet. 27, 116–125 (2011).

52. Pearson, H. Epidemiology: study of a lifetime. Nature 
471, 20–24 (2011).

53. Yamagata, K. DNA methylation profiling using live-cell 
imaging. Methods 52, 259–266 (2010).

54. Paliwal, A., Vaissiere, T. & Herceg, Z. Quantitative 
detection of DNA methylation states in minute amounts 
of DNA from body fluids. Methods 52, 242–247 (2010).

55. Levenson, V. V. DNA methylation as a universal 
biomarker. Expert Rev. Mol. Diagn. 10, 481–488 
(2010).

56. Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. 
Genome-wide association studies: theoretical and 
practical concerns. Nature Rev. Genet. 6, 109–118 
(2005).

57. Li, Y. et al. The DNA methylome of human peripheral 
blood mononuclear cells. PLoS Biol. 8, e1000533 
(2010).

58. Breitling, L. P., Yang, R., Korn, B., Burwinkel, B. & 
Brenner, H. Tobacco-smoking-related differential DNA 
methylation: 27k discovery and replication.  
Am. J. Hum. Genet. 88, 450–457 (2011).
This is the first example of a well-designed EWAS. 
The authors used a combination of a discovery 
cohort and technical validation using a different 
platform, followed by replication, to identify a 
single CpG site that displays an extremely 
significant correlation with smoking status.

59. The Wellcome Trust Case Control Consortium. 
Genome-wide association study of 14,000 cases of 
seven common diseases and 3,000 shared controls. 
Nature 447, 661–678 (2007).

60. Stephens, M. & Balding, D. J. Bayesian statistical 
methods for genetic association studies. Nature Rev. 
Genet. 10, 681–690 (2009).

61. Hoggart, C. J., Clark, T. G., De Iorio, M., Whittaker, J. C. 
& Balding, D. J. Genome-wide significance for dense 
SNP and resequencing data. Genet. Epidemiol. 32, 
179–185 (2008).

62. McCarthy, M. I. et al. Genome-wide association 
studies for complex traits: consensus, uncertainty and 
challenges. Nature Rev. Genet. 9, 356–369 (2008).

63. Clayton, D. G. et al. Population structure, differential 
bias and genomic control in a large-scale, case-control 
association study. Nature Genet. 37, 1243–1246 
(2005).

64. Astle, W. & Balding, D. J. Population structure and 
cryptic relatedness in genetic association studies.  
Stat. Sci. 24, 11 (2009).

65. Teschendorff, A. E. et al. Age-dependent DNA 
methylation of genes that are suppressed in stem cells 
is a hallmark of cancer. Genome Res. 20, 440–446 
(2010).

66. van Belle, G. Statistical Rules of Thumb 2nd edn 
(Wiley, Hoboken, New Jersey, 2008).

67. Chanock, S. J. et al. Replicating genotype-phenotype 
associations. Nature 447, 655–660 (2007).

68. Cedar, H. & Bergman, Y. Linking DNA methylation and 
histone modification: patterns and paradigms. Nature 
Rev. Genet. 10, 295–304 (2009).

69. Palacios, D., Summerbell, D., Rigby, P. W. & Boyes, J. 
Interplay between DNA methylation and transcription 
factor availability: implications for developmental 
activation of the mouse Myogenin gene. Mol. Cell. 
Biol. 30, 3805–3815 (2010).

70. Sawyers, C. L. The cancer biomarker problem. Nature 
452, 548–552 (2008).

71. Grutzmann, R. et al. Sensitive detection of colorectal 
cancer in peripheral blood by septin 9 DNA 
methylation assay. PLoS ONE 3, e3759 (2008).

72. Payne, S. R. From discovery to the clinic: the novel 
DNA methylation biomarker mSETP9 for the detection 
of colrectoal cancer in blood. Epigenomics 2,  
575–585 (2010).

73. Khleif, S. N., Doroshow, J. H. & Hait, W. N.  
AACR-FDA-NCI Cancer Biomarkers Collaborative 
consensus report: advancing the use of biomarkers  
in cancer drug development. Clin. Cancer Res. 16, 
3299–3318 (2010).

74. Poste, G. Bring on the biomarkers. Nature 469, 2 
(2011).

75. Bell, C. G. et al. Integrated genetic and epigenetic 
analysis identifies haplotype-specific methylation in 
the FTO type 2 diabetes and obesity susceptibility 
locus. PLoS ONE 5, e14040 (2010).

76. Ernst, J. & Kellis, M. Discovery and characterization of 
chromatin states for systematic annotation of the 
human genome. Nature Biotech. 28, 817–825 (2010).

77. Altshuler, D. et al. A haplotype map of the human 
genome. Nature 437, 1299–1320 (2005).

78. Frazer, K. A. et al. A second generation human 
haplotype map of over 3.1 million SNPs. Nature 449, 
851–861 (2007).

79. Eckhardt, F. et al. DNA methylation profiling of human 
chromosomes 6, 20 and 22. Nature Genet. 38, 
1378–1385 (2006).
The first study to show that DNA methylation is 
correlated in blocks of up to 1kb. This finding 
enables the design of cost-effective EWASs with 
comprehensive genome coverage.

80. Beck, S. & Rakyan, V. K. The methylome: approaches 
for global DNA methylation profiling. Trends Genet. 
24, 231–237 (2008).

81. Li, N. et al. Whole genome DNA methylation analysis 
based on high throughput sequencing technology. 
Methods 52, 203–212 (2010).

82. Robinson, M. D., Statham, A. L., Speed, T. P. &  
Clark, S. J. Protocol matters: which methylome are you 
actually studying? Epigenomics 2, 587–598 (2010).

83. Irizarry, R. A. et al. Comprehensive high-throughput 
arrays for relative methylation (CHARM). Genome Res. 
18, 780–790 (2008).

84. Bibikova, M. et al. Genome-wide DNA methylation 
profiling using Infinium assay. Epigenomics 1,  
177–200 (2009).

85. Suzuki, M. & Greally, J. M. DNA methylation profiling 
using HpaII tiny fragment enrichment by ligation-
mediated PCR (HELP). Methods 52, 218–222 (2010).

86. Brinkman, A. B. et al. Whole-genome DNA 
methylation profiling using MethylCap-seq. Methods 
52, 232–236 (2010).

87. Rauch, T. A. & Pfeifer, G. P. DNA methylation profiling 
using the methylated-CpG island recovery assay 
(MIRA). Methods 52, 213–217 (2010).

88. Serre, D., Lee, B. H. & Ting, A. H. MBD-isolated 
genome sequencing provides a high-throughput and 
comprehensive survey of DNA methylation in the 
human genome. Nucleic Acids Res. 38, 391–399 
(2010).

89. Mohn, F., Weber, M., Schubeler, D. & Roloff, T. C. 
Methylated DNA immunoprecipitation (MeDIP). 
Methods Mol. Biol. 507, 55–64 (2009).

90. Down, T. A. et al. A Bayesian deconvolution strategy 
for immunoprecipitation-based DNA methylome 
analysis. Nature Biotech. 26, 779–785 (2008).

91. Gu, H. et al. Preparation of reduced representation 
bisulfite sequencing libraries for genome-scale DNA 
methylation profiling. Nature Protoc. 6, 468–481 
(2011).

92. Cokus, S. J. et al. Shotgun bisulphite sequencing of the 
Arabidopsis genome reveals DNA methylation 
patterning. Nature 452, 215–219 (2008).

93. Lister, R. et al. Highly integrated single-base resolution 
maps of the epigenome in Arabidopsis. Cell 133, 
523–536 (2008).

94. Huang, Y. et al. The behaviour of 
5-hydroxymethylcytosine in bisulfite sequencing. 
PLoS ONE 5, e8888 (2010).

R E V I E W S

12 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved



95. Butcher, L. M. & Beck, S. AutoMeDIP-seq:  
a high-throughput, whole genome, DNA methylation 
assay. Methods 52, 223–231 (2010).

96. Clarke, J. et al. Continuous base identification  
for single-molecule nanopore DNA  
sequencing. Nature Nanotechnol. 4, 265–270 
(2009).

97. Flusberg, B. A. et al. Direct detection of DNA 
methylation during single-molecule, real-time 
sequencing. Nature Methods 7, 461–465  
(2010).

98. Pembrey, M. E. et al. Sex-specific, male-line 
transgenerational responses in humans.  
Eur. J. Hum. Genet. 14, 159–166 (2006).

Acknowledgements
S.B. was supported by the Wellcome Trust (084071) and a 
Royal Society Wolfson Research Merit Award.

Competing interests statement
The authors declare no competing financial interests.

FURTHER INFORMATION
Vardhman K. Rakyan’s homepage:  
http://www.icms.qmul.ac.uk/Profiles/Diabetes/Rakyan%20
Vardhman.htm
Thomas A. Down’s homepage:  
http://www.gurdon.cam.ac.uk/down.html
David J. Balding’s homepage:  
http://www.zebfontaine.eclipse.co.uk/djb.htm
Stephan Beck’s homepage: http://www.ucl.ac.uk/cancer/
research-groups/medical-genomics
Avon Longitudinal Study of Parents and Children:  
http://www.bristol.ac.uk/alspac
Biobank Central: http://en.wikipedia.org/wiki/ 
BioBank_Central
Biomarker Consortium: http://www.thebiomarkersconsortium.org
Canadian Biosample Repository: http://biosample.ca
Catalog of Published Genome-Wide Association Studies: 
http://www.genome.gov/26525384
EuroBioBank: http://www.eurobiobank.org

 
Epigenomics of Common Diseases Conference:  
http://www.wellcome.ac.uk/conferences/epigenomics
GenomEUtwin project: http://www.genomeutwin.org
International Cancer Genome Consortium:  
http://www.icgc.org
International Human Epigenome Consortium:  
http://www.ihec-epigenomes.org
Longitudinal cohorts listed on Wikipedia:  
http://en.wikipedia.org/wiki/Longitudinal_study
OncoTrack Consortium: http://www.oncotrack.org
Public Population Project Observatory:  
http://www.p3gobservatory.org
The Twins UK cohort: http://www.twinsuk.ac.uk/cohort.html
UK Biobank: http://www.ukbiobank.ac.uk
UK HALCyon cohorts: http://www.halcyon.ac.uk/?q=cohorts
US National Twin Registry: http://www.niehs.nih.gov/news/
events/pastmtg/2005/twin/index.cfm

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

NATURE REVIEWS | GENETICS  ADVANCE ONLINE PUBLICATION | 13

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.icms.qmul.ac.uk/Profiles/Diabetes/Rakyan Vardhman.htm
http://www.icms.qmul.ac.uk/Profiles/Diabetes/Rakyan Vardhman.htm
http://www.gurdon.cam.ac.uk/down.html
http://www.zebfontaine.eclipse.co.uk/djb.htm
http://www.ucl.ac.uk/cancer/research-groups/medical-genomics
http://www.ucl.ac.uk/cancer/research-groups/medical-genomics
http://www.bristol.ac.uk/alspac/
http://en.wikipedia.org/wiki/BioBank_Central
http://en.wikipedia.org/wiki/BioBank_Central
http://www.thebiomarkersconsortium.org/
http://biosample.ca/
http://www.genome.gov/26525384
http://www.eurobiobank.org/
http://www.wellcome.ac.uk/conferences/epigenomics
http://www.genomeutwin.org/
http://www.icgc.org/
http://www.ihec-epigenomes.org/
http://en.wikipedia.org/wiki/Longitudinal_study
http://www.oncotrack.org/
http://www.p3gobservatory.org/
http://www.twinsuk.ac.uk/cohort.html
http://www.ukbiobank.ac.uk/
http://www.halcyon.ac.uk/?q=cohorts
http://www.niehs.nih.gov/news/events/pastmtg/2005/twin/index.cfm
http://www.niehs.nih.gov/news/events/pastmtg/2005/twin/index.cfm

	Epigenetic variation and complex disease
	Abstract | Despite the success of genome-wide association studies (GWASs) in identifying loci associated with common diseases, a substantial proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a posit
	Box 1 | Definition of features known to vary in DNA methylation
	Box 2 | Profiling technologies for epigenome-wide association studies
	Profiling epigenetic variation
	Figure 1 | The different types of sample cohorts that could be used in an epigenome-wide association study. Refer to the main text for a full discussion.
	Study designs for EWASs
	Box 3 | Transgenerational epigenetic inheritance
	Choice of tissue for EWASs
	Examples of EWAS design
	Statistical considerations for EWASs
	Figure 2 | Hypothetical DNA methylation frequency spectra in cases and controls. Methylation states in controls (purple curve) and cases for four effect sizes (other curves) are shown under three scenarios. In panels a and b, numbers in the parentheses in
	Table 1 | Power simulations for epigenome-wide association studies
	Post-EWAS follow-up studies
	Integration of EWASs and GWASs
	Conclusions and future directions



