

Southampton

OpenDreamKit Virtual Research Environment

Marijan Beg* and H. Fangohr

Faculty of Engineering and the Environment, **University of Southampton**, Southampton, UK

* email: m.beg@soton.ac.uk

Ljubljana, Slovenia (November 2016)

OpenDreamKit

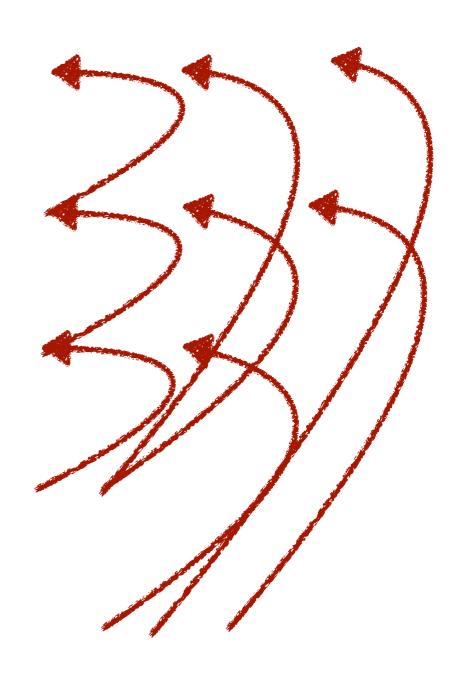
- Horizon 2020 European Research Infrastructure project
- 4 years
- Started in September 2015 (just over a year now)
- 50 people in over 16 European cities
- Goal: Develop Virtual Research Environments in pure mathematics and applications, supporting the full research cycle

VIRTUAL RESEARCH ENVIRONMENT

OUTLINE

- 1. Computational science
- 2. Conventional workflow (example and problems)
- 3. Virtual Research Environment Example (Jupyter, JOOMMF, benefits)
- 4. Summary

COMPUTATIONAL SCIENCE

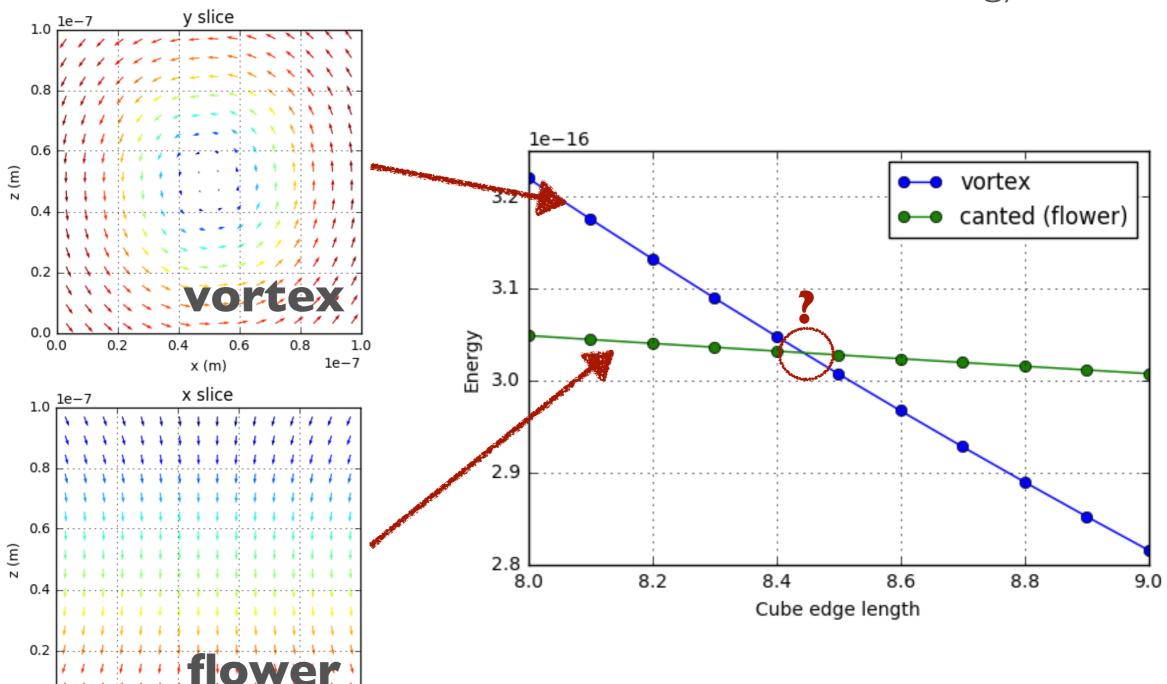

- Very often the only feasible way to address some research challenges
- Complement theory and experiments
- Emerging as a third pillar in research and development
- It is becoming more used and accepted as models, computational power, and simulation techniques advance

CONVENTIONAL COMPUTATIONAL WORKFLOW

- I. write simulation code
- 2. run code
- 3. data analysis and visualisation
- 4. write paper
- 5. share & publish

CONVENTIONAL COMPUTATIONAL WORKFLOW

- I. write simulation code
- 2. run code
- 3. data analysis and visualisation
- 4. write paper
- 5. share & publish


MICROMAGNETIC EXAMPLE

MICROMAGNETICS

- Micromagnetics studies magnetic phenomena at micro- and nanoscale
- For instance, used in the design and engineering of magnetic storage devices (hard disks)
- Widely used in academic and industrial communities
- Very often the only possible way of addressing particular research challenges

RESEARCH QUESTION

For what edge length, vortex and flower states have the same energy?

0.4

y (m)

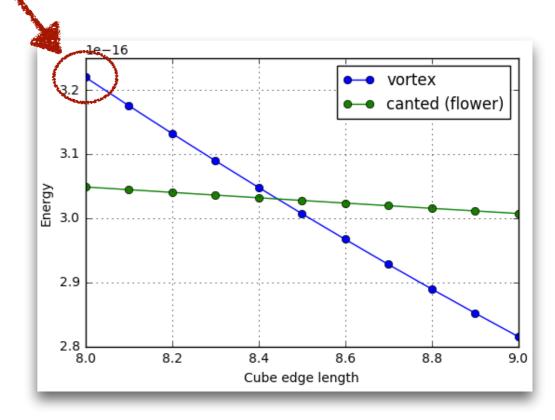
1e-7

STEP I: WRITE SIMULATION CONFIGURATION

```
my_project — IPython: Users/mb4e10 — emacs -nw stdprob3.mif — 95×37
# MIF 2.1
# MIF Example File: stdprob3.mif
# Description: Sample problem description for muMAG Standard Problem #3
set pi [expr {4*atan(1.0)}]
set mu0 [expr {4*$pi*1e-7}]
Parameter seed 0
RandomSeed $seed ;# Initialize seed to {} to get a seed
## value from the system clock.
# Simulation parameters
               ;# Cube dimension, in units of exchange length
                ;# Number of cells along one edge of cube
Parameter initial_state "vortex" ;# Initial state should be
## one of "uniform", "vortex", "canted", "cantedvortex", "twisted",
## "random" or "file <filename>"; in the last case <filename> is the
## name of a file to use as the initial configuration.
                                                                                     vortex
Parameter stop 1e-3
                                                                                     canted (flower)
# Auxiliary variables:
                                                            3.1
# Work out Ms so magnetostatic energy density, Km=0.5*mu0*Ms^2,
# is 1e6 J/m^3
                                                            3.0
set Km 1e6
set Ms [expr {sqrt(2*$Km/$mu0)}]
# Arbitrarily set cube dimension to 100 nm, and compute cellsize
# exchange length based on parameters L and N.
-uu-:---F1 stdprob3.mif Top L1
                                  (Fundamental) ---
                                                            2.8
                                                             8.0
                                                                     8.2
                                                                             8.4
                                                                                    8.6
                                                                                            8.8
                                                                                                   9.0
                                                                            Cube edge length
```

STEP 2: RUN SIMULATION

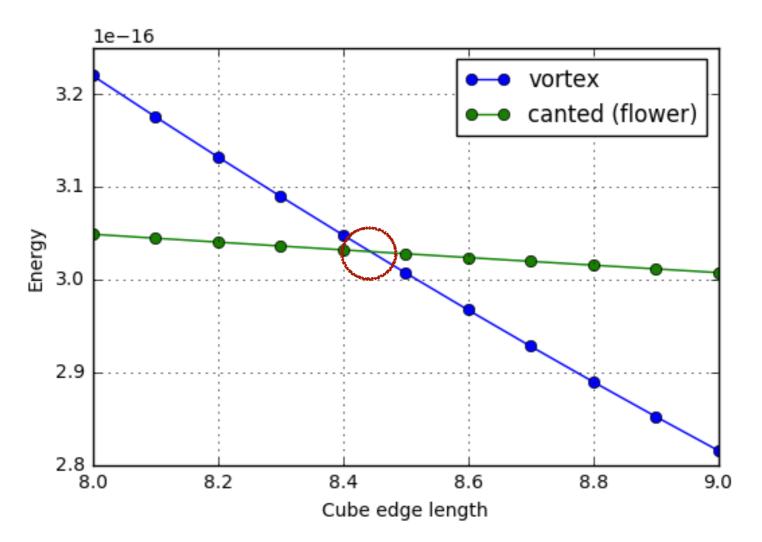
```
O
                 my_project — IPython: Users/mb4e10 — -bash • python — 95×37
Marijans-MBP:my_project mb4e10$ ls
stdprob3.mif
Marijans-MBP:my_project mb4:00s tclsh $00MMFTCL boxsi +fg stdprob3.mif -exitondone 1
Start: "/Users/mb4e10/my_project/stdprob3.mif"
Options: -exitondone 1 -threads 2
Boxsi version 1.2.1.0
Running on: marijans-macbook-pro.local
OS/machine: Darwin/x86_64
User: mb4e10
              PID: 72176
Number of threads: 2
Mesh geometry: 32 \times 32 \times 32 = 32,768 cells
Checkpoint file: /Users/mb4e19/my_project/sp3-vortex-seed0000.restart
Boxsi run end.
Marijans-MBP:my_projec___b4e10$ ls
sp3-vortex-seed0000.odt stdprob3.mif
Marijans-MBP:my_project mb4e10$
```


STEP 3: READ DATA

```
    my_project — IPython: Users/mb4e10 — emacs -nw sp3-vortex-seed00000.odt — 95×37

# ODT 1.0
# Table Start
# Title: mmArchive Data Table, Wed Nov 16 20:54:28 GMT 2016
# Columns: {0xs_CGEvolve::Max mxHxm} {0xs_CGEvolve::Total energy} {0xs_CGEvolve::Delta E} {0xs\
_CGEvolve::Bracket count} {0xs_CGEvolve::Line min count} {0xs_CGEvolve::Conjugate cycle count}\
{Oxs_CGEvolve::Cycle_count} {Oxs_CGEvolve::Cycle_sub_count} {Oxs_CGEvolve::Energy_calc_count}\
Oxs_UniaxialAnisotropy::Energy Oxs_UniformExchange::Energy {Oxs_UniformExchange::Max Spin Ang\
} {Oxs_UniformExchange::Stage Max Spin Ang} {Oxs_UniformExchange::Run Max Spin Ang} Oxs_Demag:\
           Oxs_MinDriver::Iteration {Oxs_MinDriver::Stage iteration} Oxs_MinDriver::Stage Oxs_\
                 Oxs_MinDriver::my
MinDriver::mx
                                      Oxs_MinDriver::mz
# Units:
                      A/m
                                                                              J
         {}
                                        {}
                                                                           {}
             {}
                                           {}
                                                                             {}
                                             J
                                                                             deq
                     deq
                                                               deq
                                                                                             J
                      {}
                                                    {}
                                                                               {}
   {}
                        {}
                                             3.2257415663518404e-16
              0.00097778028256529097
                                      326
                                                                         7
       353
           340
                                         333
                                                                           680
             5.4172367330709765e-17
                                             1.780007679106069e-16
                                                                                11.011344278380\
658
                        90.0000000000000014
                                                                  90.0000000000000014
  9.0401021393867362e-17
                                                          670
                            670
           0.40912126717720015 4.6139202285652408e-17 -1.9801501518039851e-16
# Table End
                                   All L1
                                               (Fundamental)----
-:---F1 sp3-vortex-seed0000.odt
File mode specification error: (error "Buffer format not recognized")
```

REPEAT SIMULATIONS...


L	flower	vortex		
8.0	?	3.23×10^{-16}		
8.1	?	?		
8.2	?	?		
8.3	?	?		
8.4	?	?		
8.5	?	?		
8.6	?	?		
8.7	?	?		
8.8	?	?		
8.9	?	?		
9.0	?	?		

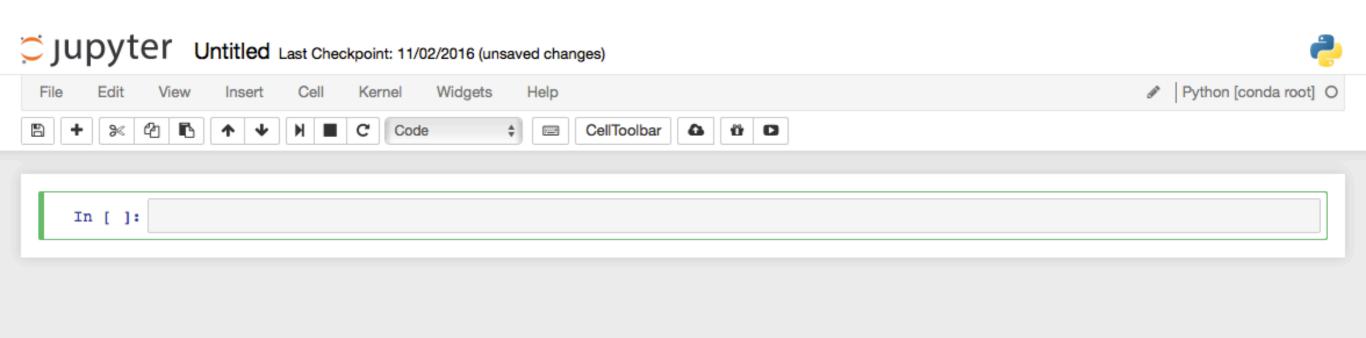
We have to repeat steps 1, 2, and 3 to obtain other 21 points

POSTPROCESSING

• We plot the data we obtained by running separate plotting scripts or by using some Graphical User Interfaces (Python, MATLAB, Excel, Origin...)

Find crossing

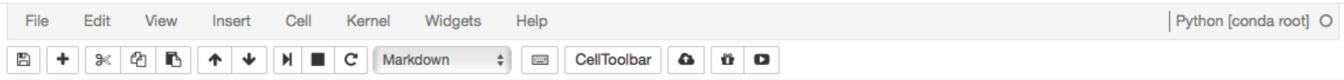
PROBLEMS WITH THIS SIMPLE EXAMPLE WORKFLOW


- I. Time consuming
- 2. Keeping log of all steps that were run and in what order
- 3. Necessary to write postprocessing scripts (well tested?)
- 4. Collaboration?
- 5. Reproducibility?
- 6. Abusing instead of using simulation

VIRTUAL RESEARCH ENVIRONMENT WORKFLOW

JOOMMF

- Micromagnetic Virtual Research Environment
- Make running OOMMF simulations in Jupyter notebook possible
- Jupyter + OOMMF = JOOMMF
- Domain specific language embedded in general purpose language
- In the first stage, we developed a Python wrapper for OOMMF


JUPYTER NOTEBOOK

TEXT AND EQUATIONS

JOOMMF workflow in Virtual Research Environment

Problem specification

This problem is to calculate a single domain limit of a cubic magnetic particle. This is the size \$L\$ of equal energy for the so-called flower state (which one may also call a splayed state or a modified single-domain state) on the one hand, and the vortex or curling state on the other hand.

Geometry:

A cube with edge length, L, expressed in units of the intrinsic length scale, $l_\text{ex} = \sqrt{A/K_\text{m}}$, where K_m is a magnetostatic energy density, $K_\text{m} = \frac{1}{2} \mu_{0}M_\text{s}^{2}$.

Material parameters:

- uniaxial anisotropy $K_{text\{u\}}$ with $K_{text\{u\}} = 0.1 K_{text\{m\}}$, and with the easy axis directed parallel to a principal axis of the cube (0, 0, 1),
- exchange energy constant is $A = \frac{1}{2}\mu_{0}M_{\text{s}^{2}l_{x}^{2}}.$

More details about the standard problem 3 can be found in Ref. 1.

TEXT AND EQUATIONS

JOOMMF workflow in Virtual Research Environment

Problem specification

This problem is to calculate a single domain limit of a cubic magnetic particle. This is the size L of equal energy for the so-called flower state (which one may also call a splayed state or a modified single-domain state) on the one hand, and the vortex or curling state on the other hand.

Geometry:

A cube with edge length, L, expressed in units of the intrinsic length scale, $l_{\rm ex}=\sqrt{A/K_{\rm m}}$, where $K_{\rm m}$ is a magnetostatic energy density, $K_{\rm m}=\frac{1}{2}\mu_0M_{\rm s}^2$.

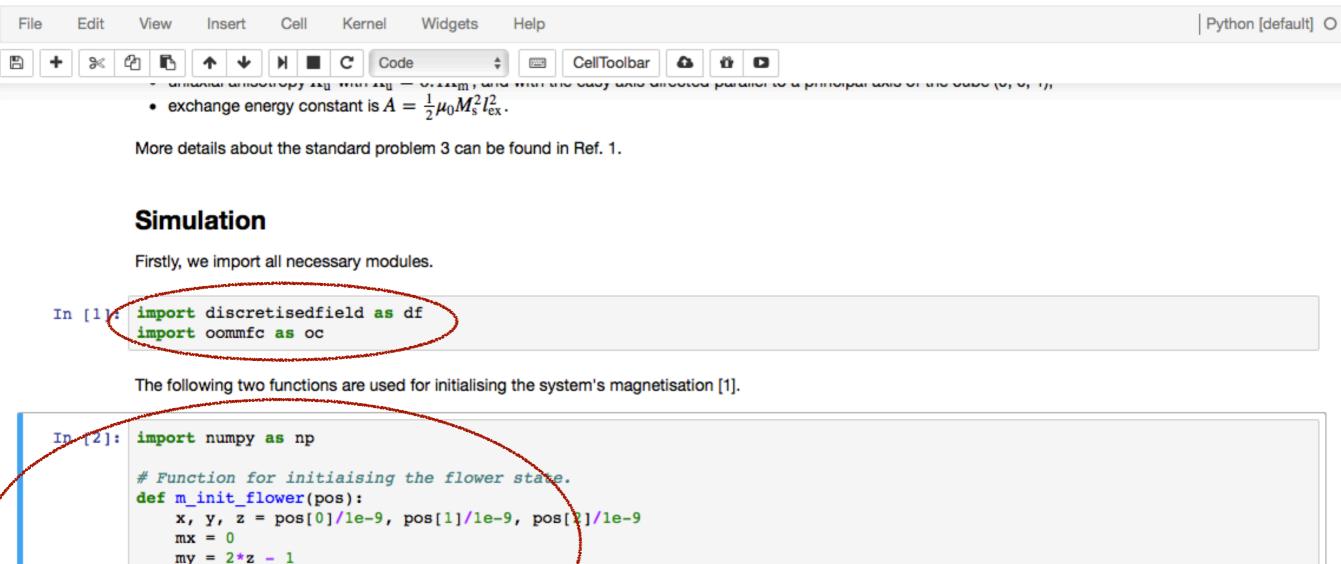
Material parameters:

- uniaxial anisotropy K_u with $K_u = 0.1K_m$, and with the easy axis directed parallel to a principal axis of the cube (0, 0, 1),
- exchange energy constant is $A = \frac{1}{2}\mu_0 M_{\rm s}^2 l_{\rm ex}^2$.

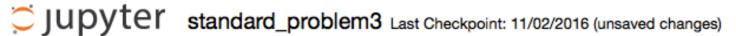
More details about the standard problem 3 can be found in Ref. 1.

CODE

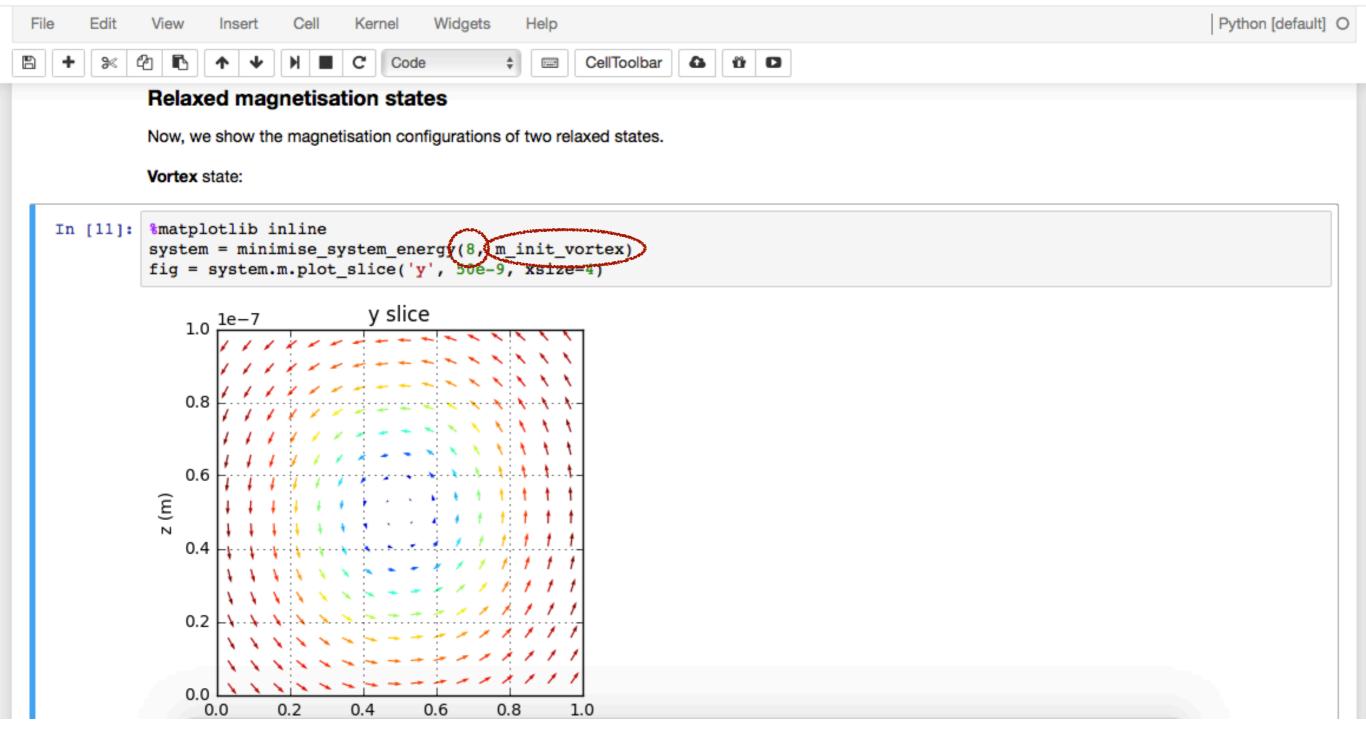
Jupyter standard_problem3 Last Checkpoint: 11/02/2016 (unsaved changes)


mz = -2*y + 1

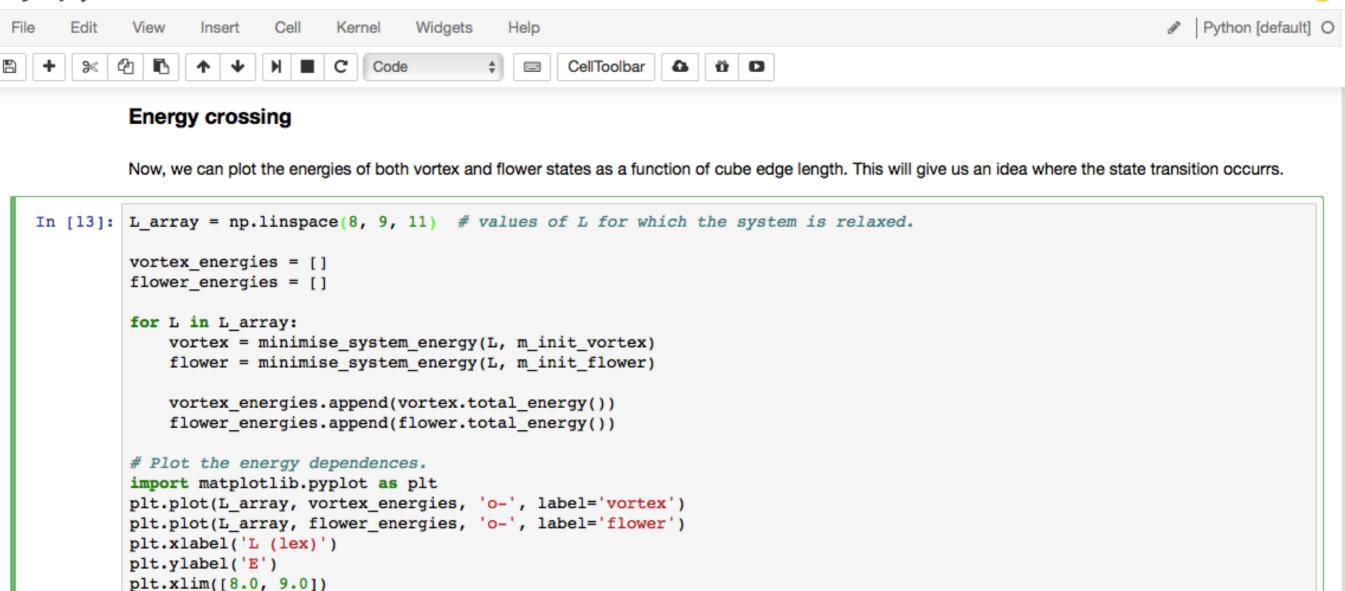
else:


norm squared = mx**2 + my**2 + mz**2

if norm_squared <= 0.05:
 return (1, 0, 0)</pre>

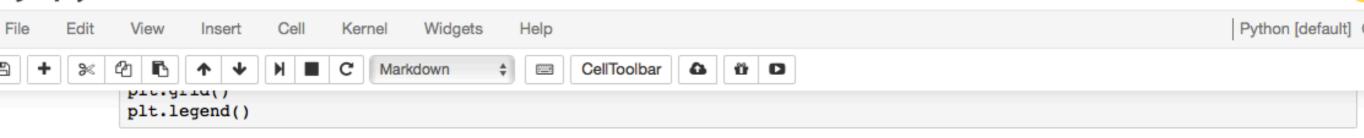


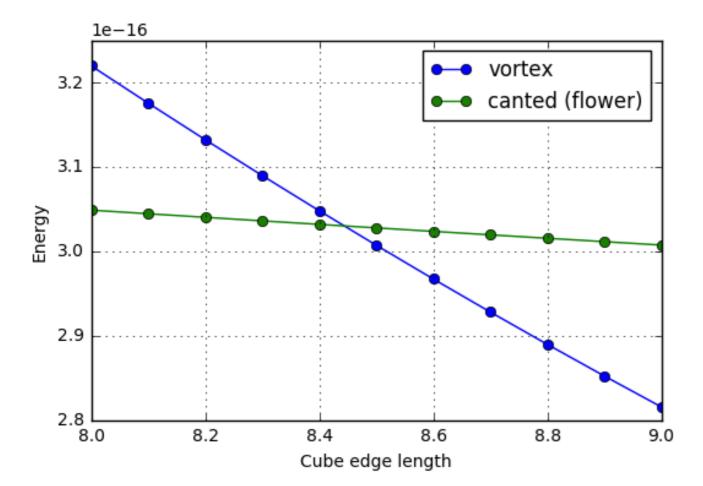
VISUALISATION



MULTIPLE SIMULATION RUNS

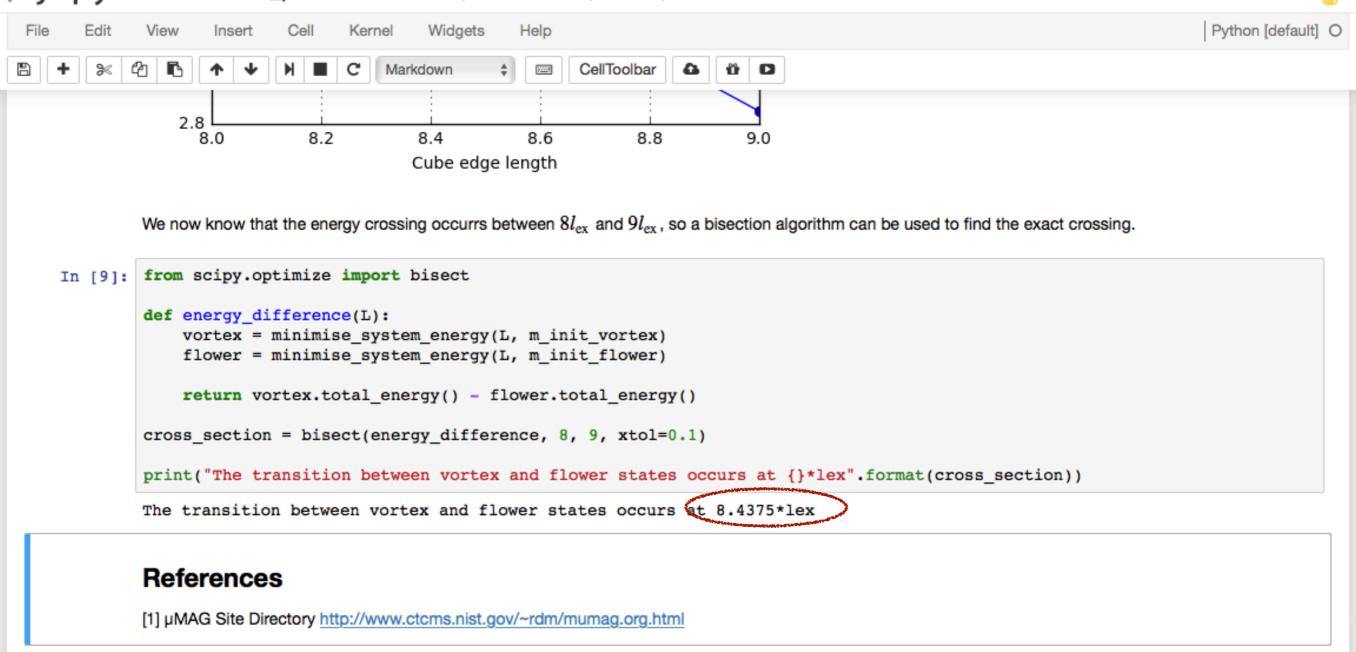
Jupyter standard_problem3 Last Checkpoint: 11/02/2016 (unsaved changes)


plt.grid()
plt.legend()



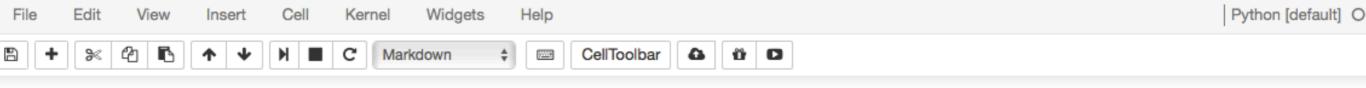
PLOTTING

Jupyter standard_problem3 Last Checkpoint: 11/02/2016 (autosaved)


Out[8]: <matplotlib.legend.Legend at 0x112caab70>

ENERGY CROSSING

Jupyter standard_problem3 Last Checkpoint: 11/02/2016 (autosaved)



TABLES

Jupyter standard_problem4 (autosaved)

Postprocessing

When we drove the system using the TimeDriver, we specified that we want to save the magnetisation configuration n = 200 times. A detailed table of all computed parameters from the last simulation can be shown from the datatable (system.dt), which is a pandas dataframe [2].

For instance, if we want to show the last 10 rows in the table, we run:

In [16]: system.dt.tail(5)

Out[16]:

	E	Ecount	max_dm/dt	dE/dt	deltaE	Eex	max_spin_angle	stage_max_spin_angle	run_max_spin_angle	Ed
195	-2.676805e- 18	3802.0	1168.558002	-1.701626e- 09	-2.292409e- 21	9.509917e- 20	3.988227	4.335480	29.984064	8.53911 19
196	-2.685941e- 18	3821.0	1264.690715	-1.936455e- 09	-2.633442e- 21	8.603004e- 20	4.234452	4.234452	29.984064	8.85139 19
197	-2.695973e- 18	3840.0	1385.550409	-2.055475e- 09	-2.820054e- 21	8.010709e- 20	4.782664	4.782664	29.984064	9.07919 19
198	-2.706283e- 18	3859.0	1350.603218	-2.048108e- 09	-2.831441e- 21	7.558538e- 20	4.688752	4.815510	29.984064	9.22294 19
199	-2.716260e- 18	3878.0	1189.283501	-1.925038e- 09	-2.680093e- 21	7.113525e- 20	4.377352	4.688752	29.984064	9.29227 19

BENEFITS

- Documentation, computation, visualisation in the same notebook
- The entire workflow is contained in a single documents
- Self documenting
- Easy to share, publish, and collaborate
- Reproducible

SUMMARY

- Current workflows in computational science have many flaws.
- Probably the most important one is the reproducibility.
- Virtual Research Environment allows us to have documentation (text and equations), code, code outputs (text, figures, tables) in a single file
- We have the benefit of using already existing libraries for data analysis and visualisation because we use general purpose language
- Much easier publishing, sharing, collaboration
- Important for reproducibility
- URL: joommf.github.io
- Beg et al. arXiv 1609.07432 (2016)
- email: <u>m.beg@soton.ac.uk</u>
- Acknowledge contributions from Hans Fangohr, Ryan A. Pepper, Thomas Kluyver, and Min Ragan-Kelley. Financially supported by OpenDreamKit project