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The human glutathione S-transferase, GSTs, possess both

enzymatic and non-enzymatic functions and are involved in

many important cellular processes, such as, phase II

metabolism, stress response, cell proliferation, apoptosis,

oncogenesis, tumor progression and drug resistance. The non-

enzymatic functions of GSTs involve their interactions with

cellular proteins, such as, JNK, TRAF, ASK, PKC, and TGM2,

during which, either the interacting protein partner undergoes

functional alteration or the GST protein itself is post-

translationally modified and/or functionally altered. The

majority of GST genes harbor polymorphisms that influence

their transcription and/or function of their encoded proteins.

This overview focuses on recent insights into the biology and

pharmacogenetics of GSTs as a determinant of cancer drug

resistance and response of cancer patients to therapy.

Addresses

Department of Surgery, The Comprehensive Cancer Center and

The Preston Robert Tisch Brain Tumor Center, Duke University,

Durham, NC 27707, United States

Corresponding author: Ali-Osman, Francis (francis.aliosman@duke.edu)
Current Opinion in Pharmacology 2007, 7:367–374

This review comes from a themed issue on

Cancer

Edited by Kenneth Tew and Francis Ali-Osman

Available online 6th August 2007

1471-4892/$ – see front matter

# 2007 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.coph.2007.06.009

Introduction
Human GSTs are categorized into cytosolic/nuclear, mito-

chondrial, and microsomal [1]. Seven classes of cytosolic

GSTs have been identified, namely, alpha, mu, pi, sigma,

omega, theta, and zeta, based on their sequence sim-

ilarities, substrate specificity, and immuno-reactivity.

Microsomal GSTs, are also designated membrane-associ-

ated proteins in eicosanoid and glutathione metabolism

(MAPEGs). Overexpression of one of the MAPEGs,

MGST1, has been associated with resistance to chloroam-

bucil, melphalan, and cisplatin [2]. The only confirmed

mitochondrial GST in humans is GST-kappa, which is also

present in peroxisomes [3,4]. Evidence to date indicates

that nuclear GSTs are cytosolic GSTs that have translo-

cated, by, as yet unkown mechanisms, to the nucleus.

GSTs play a central role in phase II metabolism, in which

they catalyze the conjugation of various substrates, with
www.sciencedirect.com
electrophilic moieties to glutathione (GSH; g-L-glutamyl-

L-cysteinyl glycine). The resulting more water-soluble

conjugates are excreted via the MRP efflux pumps or

undergo further metabolism to mercapturic acids [5,6].

Substrates of GSTs include a wide range of endogenous

metabolites, xenobiotics and alkylating and free radical

generating anti-cancer drugs. Some GSTs also function as

glutathione peroxidases and/or cis–trans isomerases [7]. In

addition to their enzymatic and related function, GSTs also

possess non-enzymatic functions, in which they regulate a

number of cellular processes that contribute to the intrinsic

ability of cells to survive genotoxic, metabolic and oxi-

dative stress. This overview summarizes some of the recent

findings, with appropriate reference to earlier findings, on

the structure and function of this important group of

cellular proteins as they relate to tumor response to therapy

and/or drug resistance.

GST polymorphisms and tumor drug
resistance
Most human GSTs harbor polymorphisms, primarily,

single nucleotide polymorphisms (SNPs) and less fre-

quently, deletions (Table 1) and the relationship between

these polymorphisms and clinical outcome in cancer

therapy is, currently a major area of research focus, with

the main focus being directed at GST classes alpha, mu,

pi and theta. This section summarizes some of the more

recent advances in this area.

GST-alpha

The alpha class GSTs, GSTA1-A5, are encoded by genes

clustered within chromosome 6p12 (Table 1) and possess

overlapping substrate specificities [6]. GSTA1, GSTA2

and GSTA3 are widely expressed in human tissues,

predominantly, the liver [6]. By contrast, GSTA4 is rarely

expressed and GSTA5 protein is normally undetectable.

The two human GSTA1 alleles, GSTA1*A and

GSTA1*B, result from SNPs in the GSTA1 promoter

region that result, under normal conditions, in higher

transcriptional activity of the GSTA1*A gene [6].

GSTA*1 also catalyzes the glutathionylation of anti-can-

cer agents, notably, the nitrogen mustard analogues,

chloroambucil, melphalan and thiotepa, more effectively

than GSTA1*B [8,9]. Consistent with this, in a recent

study, patients with the GSTA1*A/*A genotype had a

significantly higher rate of elimination of busulfan than

those with the heterozygous genotype [10]. GSTA1 trans-

fection has also been shown to render small cell lung

cancer cells more resistant to doxorubicin-induced apop-

tosis [11]. In breast cancer, patients with the homozygous
Current Opinion in Pharmacology 2007, 7:367–374
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Table 1

Chromosomal location, substrate specificities and genetic polymorphisms of cytosolic GSTs

Class Chromosome Subunits Substrates Alleles Nucleotide/codon change

Alpha 6p12 GSTA1 BCNU, brostallicin

busulfan, melphalan,

thiotepa, chloroambucil

nitrogen mustard

GSTA1*A Promoter: -567T, -69C, -52G

GSTA1*B Promoter: -567G, -69T, -52A

GSTA2* GSTA2*A P110, S112, K196, E210

GSTA2*B P110, S112, K196A210

GSTA2*C P110, T112, K196, E210

GSTA2*D P110, S112, N196, A210

GSTA2*E S110, S112, K196, E210

GSTA3 None*

GSTA4 Thiopurines None

GSTA5 None

Mu 1q13 GSTM1 BCNU, brostallicin

ethacrynic acid

thiopurines

GSTM1*0 Deletion

GSTM1*A K173

GSTM1*B N173

GSTM1*1x2 Duplicate

GSTM2 None

GSTM3 BCNU GSTM3*A Reference intron 6

GSTM3*B Three base deletion in intron 6

GSTM4 GSTM4*A Y2517

GSTM4*B C2517

GSTM5 None

Pi 11q13 GSTP1 Brostallicin, cisplatin,

chloroambucil,

doxorubicin, ethacrynic

acid, cyclophosphamide,

ifosphamide, thiotepa

GSTP1*A Ile105, Ala114

GSTP1*B Val105, Ala114

GSTP1*C Val105, Val114

GSTP1*D Ile105, Val114

Theta 22q11 GSTT1 BCNU GSTT1*0 Deletion

GSTT1*A T104

GSTT1*B P104

GSTT2 GSTT2*A M139

GSTT2*B I139

Only substrates that are known anti-cancer or related drugs are listed.
* None reported to date.
GSTA1*B/1*B genotype had a better five-year survival

than those with other more active GSTA1 genotypes [12].

The GSTA2 locus contains five GSTA2 allelic variants,

GSTA2*A-E [13] (Table 1). GSTA2*A-D proteins are

catalytically more active than GSTA2*E [14]. The effect

of this differential enzymatic activity on drug resistance

and/or patient survival, however, remains to be deter-

mined. To date, no polymorphism has been reported in

the other GSTA subunits, namely, GSTA3-5. The func-

tional role of GSTA4 remains unknown.

GSTM (GSTm)

The genes of the Mu class of GSTs, GSTM1-M5,

(Table 1) are located on chromosome 1p13 [15]. GSTM1

has four functional alleles, GSTM1*A-B, a null (deleted)

allele, GSTM1*0 and GSTM1*1x2 [16]. GSTM1*A con-

tains a lysine and GSTM1*B an asparagine at codon 173

[17] and, although, this does not change enzymatic activity
Current Opinion in Pharmacology 2007, 7:367–374
[17], the effect on other properties of the proteins cannot be

excluded. A unique GSTM1 variant dGSTM1*1x2, con-

taining a duplicated GSTM1 gene was identified among a

Saudi Arabian population [18,19].

Increasing evidence supports a relationship between

GSTM1 polymorphism and treatment outcome. In ped-

iatric acute lymphoblastic leukemia (ALL) [20] and in

ovarian cancer [21], the GSTM1*0 genotype was ass-

ociated with a longer disease-free survival and a

higher response to chemotherapy, than GSTM1*A and

GSTM1*B [20]. The mechanisms underlying the more

favorable outcome associated with GSTM1*0 are not

fully understood. It is likely, however, that GSTM1*0

patients respond better, in part, because of their inability

to metabolize and inactivate anticancer agents. It should

be noted, however, that, in a recent study in lung cancer,

the GSTM1*0 genotype was associated with shorter

patient survival rates [22].
www.sciencedirect.com
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To date, no polymorphisms have been reported for the

GSTM2 gene. The GSTM3 locus harbors two alleles,

GSTM3*A and GSTM3*B, which differ in three base

deletions in intron 6 that generate a YY1 transcription

factor binding site and result in differential expression of

the two gene variants [23]. Compared to GSTM1 and

GSTM2 [24,25], GSTM3 is more active in metabolizing

the clinically active chloroethylnitrosourea anticancer

agent, BCNU and, consistent with that, GSTM1 was

shown to have no effect on BCNU resistance of human

gliomas and lymphocytes [26,27]. In another study, in

colorectal cancer, less advanced stage tumors and longer

disease-free survival were associated with the GSTM3*A

than the GSTM3*B genotype [28]. Based on the current

available data, the effect GSTM polymorphisms on can-

cer susceptibility and treatment outcome is likely to be

both tumor type and agent specific.

GSTP (GSTp)

The GST pi class, the most highly expressed in human

cancer, is encoded by a single gene, mapped to chromo-

some 11q13 (Table 1) [29,30]. The GSTP1 protein cat-

alyzes the glutathione-conjugation of several anti-cancer

agents [31–33]. Consistent with this, in many solid tumors

and leukemias, high tumor GSTP1 expression has been

associated with drug resistance, failure of therapy and

poor patient survival [34,35]. In gliomas, the nuclear

localization of GSTP1 complements its high expression

as a determinant of poor survival [36].

The GSTP1 locus is polymorphic with four different

alleles, GSTP1*A, GSTP1*B, GSTP1*C and GSTP1*D,

arising from nucleotide transitions that change codons 105

from Ile to Val and codon 114 from Ala to Val [37–39].

Increasing evidence demonstrates that the different

GSTP1 allelic proteins differ significantly in their ability

to metabolize anti-cancer agents [32,40,41]. For example,

thiotepa and chloroambucil are preferentially metabolized

by GSTP1*A [40,41]. Consistent with this, an earlier report

showed GSTP*1C to be more protective against cisplatin

and carboplatin than the other two GSTP1 variants [32]. In

pediatric astrocytomas, the GSTP1*C has been shown to

be involved and to be associated with an increase in

microsatellite instability [42].

Because of the differential drug metabolizing properties

of the different GSTP1 allelic proteins, GSTP1 pharma-

cogenetics is receiving increasing attention for its role in

outcome of cancer chemotherapy. Thus, in acute and

chronic myeloid leukemias, glioma, multiple myeloma,

Hodgkin’s lymphoma, and cancers of the bladder, color-

ectum, esophagus, stomach, testicles and many other

cancers, patients with the Val105 polymorphism, present

in GSTP1*B and GSTP1*C, had a better response and

survived longer than those without this allele [41,43–46].

The Val105 alleles also protect against therapy-associated

toxicities, such as, cisplatin-induced hearing impairment
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[44]. Paradoxically, the Val105-containing GSTP1 var-

iants have been associated with chemotherapy-induced

AML [45] and in multiple myeloma, the Val114 poly-

morphism was associated with a significantly worse sur-

vival [46]. Although, not directly related to cancer

therapy, it is interesting that a recent study, found that

mothers with the Ala113 polymorphism, present in

GSTP1*A, had an increased risk of having children born

with autistic disorder, suggesting a potential role for

GSTP1 in neurodevelopment [47].

Despite the overwhelming number of studies demon-

strating a strong association between GSTP1 polymorph-

ism and both treatment outcome and patient survival, it

should be noted that a few studies [48] have found no

statistically significant association between this poly-

morphism and clinical outcome.

The strong association between GSTP1, tumor resistance

and aggressive tumor growth has led to efforts to develop

small molecule GSTP1-targeted agents as novel anti-can-

cer therapeutics and as agents with which to overcome

tumor drug resistance [49,50]. Despite initial encouraging

Phase I and II clinical trials [51], the recent preliminary

results of a Phase III trial of TLK286, a first generation

GSTP1-activated glutathione prodrug with GSTP1 inhibi-

tory activity, have shown no clinical advantage, and indeed,

in some cases appeared to enhance tumor growth [52].

GSTT (GST-u)

The human theta class of GSTs is comprised of two

subunits, GSTT1 and GSTT2, both of which are located

on chromosome 22q11 (Table 1) [53,54]. GSTT1 has two

functional alleles, GSTT1*A, GSTT1*B and a null

allele, GSTT1*0 [52,55,56]. GSTT1*A and GSTT1*B

differ in an amino acid residue at codon 104, which in

GSTT1*A is threonine and in GSTT1*B, a proline [57].

The resulting proteins display a 2-fold difference in

enzymatic activity [57]. GSTT2 also has two alleles,

GSTT2*A and GSTT2*B, that although differ in amino

acid residue 139 (methionine in 2*A and isoleucine in

2*B), are similar in enzyme activity [58]. In pediatric

astrocytomas, the GSTP1*C has been shown to be

involved and to be associated with an increase in micro-

satellite instability [42]. In addition to the two genes, a

pseudogene, designated GSTT2P, was identified and

shown to have an exon-2/intron-2 splice site abnormality

and a premature translation stop signal at codon 196 [58].

Of the different GSTT1 alleles, the GSTT1*0 has

emerged as the most important predictor of cancer risk

and therapeutic response, both alone and in combination

with other GST polymorphic variants. For example,

individuals with the GSTT1*0 genotype are at a signifi-

cantly higher risk of developing bladder cancer, menin-

gioma, acute myeloid leukemia and squamous cell

carcinoma than those with at least one active GSTT1
Current Opinion in Pharmacology 2007, 7:367–374
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allele [59]. Although, relatively few, a number of reports

have examined the relationship between GSTT1 poly-

morphism and clinical outcome. In AML, breast and

ovarian cancer, patients with the GSTT1*0 genotype

had a higher response to chemotherapy and a longer

relapse-free survival than patients with the active gene

[21,60]. Conversely, in follicular non-Hodgkin’s Lym-

phoma, patients with a GSTT1 (or a GSTM1) deletion

had a significantly worse event-free survival, compared

with patients with the undeleted genotype. Together,

these studies demonstrate that the GSTT1 gene status is

an important determinant of response to therapy, pre-

sumably, a result of the decreased ability to metabolize/

detoxify the anticancer agents used in the therapy.

Multigene GST polymorphisms in tumor drug

resistance

Recent studies have shown that the simultaneous analysis

of polymorphisms of multiple classes of GSTs may cor-

relate with therapeutic outcome than the individual gene

studies. This polygenetic approach should better address

the fact that various classes of cytosolic GSTs share

overlapping substrate specificities and therefore, absence

of one GST isoform can be compensated by increased

expression of other GSTs. Another rationale is that cancer

patients are frequently treated with a combination of anti-

cancer agents that are differentially metabolized by

different GSTs. The polygenic approach is yielding

new and interesting results, particularly, in studies of

the GST null genotypes, GSTM1*0 and GSTT1*0.

For example, the combined GSTM1*0/GSTT1*0 or

the GSTM1*0/GSTP1Val105 genotype was associated

with higher response rates and better survival in ovarian

cancer [21,61]. In brain tumors, patients with the

GSTP1*A and GSTM1*0 combination survived longer

than other groups [62] and, following, nitrosourea therapy,

the GSTP1*A and GSTM1*0 combination was a better

predictor of adverse events secondary to chemotherapy

[62]. The positive results, as well as, the limitations of

candidate gene analyses has led to the current trend in

pharmacogenomics to emphasize the analysis of large

numbers of genes related to specific pathways and even

in the whole genome. For the GSTs, this can be

approached using linkage disequilibrium-based analyses

that allows the use of a small subset of tagging single

nucleotide polymorphisms to address the diversity in

large regions of the genome.

GST protein–protein interactions, cell
signaling, apoptosis and drug sensitivity
The best-characterized non-enzymatic function of the

GSTs is their interaction with other cellular proteins,

resulting in significant functional alteration of the binding

partners or post-translational modification and functional

alteration of the GSTP1 protein itself. These interactions

underlie the role of GSTs as regulators of cell signaling in

response to stress, growth factors and DNA damage, and
Current Opinion in Pharmacology 2007, 7:367–374
in cell proliferation, cell death and other processes that

ultimately lead to tumor growth and drug resistance.

Jun N-terminal kinase, JNK

JNK, a member of the family of stress-activated Ser/Thr

kinases, is the best-characterized GST interacting

protein. Under normal conditions, GSTP1 binds to and

inhibits JNK resulting in suppression of JNK downstream

signaling and apoptosis. Under oxidative or other stress,

GSTP1 undergoes oligomerization and disassociation

from JNK, leading to increased apoptosis [63,64].

Indirectly, GSTP1 increases the activity of other stress-

activated kinases, such as, ERK and p38 [63]. In human

neuroblastoma cells, GSTP1 has been shown to associate

with JNK and treatment with the topoisomerase inhibitor,

etoposide, induced dissociation of the JNK-GSTP1 com-

plex and increased the level of apoptosis [65]. Whether

the GSTP1 polymorphic variant proteins differ in their

regulation of JNK signaling remains to be determined.

Apoptosis-signal-regulating kinase 1, ASK1

ASK1 was shown to bind to GSTM1 and to inhibit

oxidative stress-induced ASK1-dependent apoptosis

[66]. Overexpression of GSTM1 has subsequently been

shown to repress ASK1 activity and ASK1-induced apop-

tosis in hepatocytes [67]. The role that the GSTM1-ASK1

interaction plays as a mediator of tumor drug resistance is

presently unknown but the diminished ASK1 activity

following the interaction with GSTM1 suggests that this

may be associated with decreased apoptotic response that

could contribute to drug resistance. Similar to GSTM1,

GSTP1 overexpression suppresses ASK1-induced apop-

tosis and protects cells against chemical-induced damage

[67]. Most recently, GSTP1 has been shown to interact

with an ASK1 upstream regulator, tumor necrosis factor

receptor-associated factor-2 (TRAF2), which is activated

and recruited to TNF receptor leading to ASK-1/JNK/p38

activation [68]. Unlike the interaction between JNK and

GSTP1, however, GSTP1 interacts with TRAF2 under

both un-stressed conditions and following TNF-a stimu-

lation in human embryonic kidney cells and human

cervical cancer cells [68]. Indirectly these observations

of the GSTP1-ASK1 interaction can affect cell survival

and apoptotic response, which in turn, can lead to drug

resistance.

Fanconia anemia group C protein, FANCC

FANCC, the only known cytoplasmic protein of the

group of proteins encoded by the Fanconi anemia genes

is a GSTP1-interacting protein and the interaction plays

an important role in mediating cellular response to

therapy. Cells from Fanconi anemia patients, deficient

in FANCC, are highly sensitive to DNA cross-linking

agents, including, anticancer agents, and transfection of

the normal FA gene into mutant cells reverses this

hypersensitivity and increases cell viability [69]. In

addition, FANCC is involved in cellular protection
www.sciencedirect.com
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against apoptosis [69]. In hematopoietic cells, overexpres-

sion of both GSTP1 and FANCC prevents the formation

of inactivating disulfide bonds and increases enzymatic

activity of the GSTP1 protein during apoptosis [70]

Although, it remains to be confirmed, these observations,

taken together, suggest that the interaction between

GSTP1 and FANCC could contribute to drug resistance

by protecting cells against the induction of apoptosis

following treatment with chemotherapeutic agents.

Tissue transglutaminase 2, TGM2

There is now conclusive evidence [71,72] that TGM2, a

member of a family of proteins that catalyze the calcium-

dependent post-translational crosslinking of a variety of

cellular proteins, is a direct binding partner of GSTP1.

TGM2 is involved in physiological cellular processes,

such as apoptosis and in the pathophysiology of a number

of neurological diseases, including Parkinson’s disease

and Alzheimer’s disease, and is also frequently overex-

pressed in human cancers. In neural cells, the TGM2/

GSTP1 interaction regulates apoptotic response to oxi-

dative stress [71]. In our laboratory, we showed that, in

glioma cells, the GSTP1/TGM2 complex is formed in the
Figure 1

GST structure, regulation and function in relationship to cancer risk and tum

active GST proteins while gene deletions and promoter methylation result in

modifications, for example, serine/threonine or tyrosine phosphorylation, alt

carcinogen metabolism and signaling. Interaction of GST genes with each o

the absence of expression of a specific GST. Interactions of GST proteins w

affect downstream cellular processes, such as, Phase II drug/carcinogen m

and cell survival ultimately leading to altered cancer risk, response to therap
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absence of apoptotic stimuli and protects the cells against

DNA damage-induced apoptosis [72]. The implication of

these observations on the role of this interaction in tumor

drug resistance, however, remains to be established.

Serine/threonine kinases (PKA, PKC) and tyrosine

kinase, epidermal growth factor receptor (EGFR)

Recent studies in our laboratory have established the

human GSTP1 protein as a substrate for phosphorylation

by the serine/threonine kinases, PKA and PKC [73] and

by EGFR [74]. Phosphorylation of GSTP1 by these

kinases is GSH-dependent and increases the catalytic

activity of GSTP1. These data suggest the GSTP1

protein is likely to exist in a hyper-phosphorylated/

hyper-active state in tumors with aberrant activation of

the PKA/PKC and/or EGFR pathways and with high

levels of glutathione [73,74]. Our data also demonstrate

that the resistance of cells to cisplatin in enhanced

following activation of PKC in a GSTP1-overexpressing

glioblastoma cell line but not in the isogenic counterpart

without GSTP1. These findings suggest that the phos-

phorylation of GSTP1 by PKC could represent a novel

resistance mechanism and add to the complexity of the
or drug resistance. Genetic polymorphisms result in differentially

the lack of, or altered protein expression. Post-translational

er protein stability and/or function, such as, in Phase II drug/

ther and/or with other genes can alter the effect of or compensate for

ith other proteins can impact protein function. Each of these can

etabolism and detoxifications, signaling, stress response, apoptosis

y and the severity of therapy-related normal tissue toxicities.
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biology of GSTP1 and of its role in cancer biology,

prognosis and therapeutic outcome.

Conclusion
Cumulative evidence over the past two decades has

established the importance of GSTs as determinants of

therapeutic response and patient survival in cancer. The

best-characterized mechanism underlying this role of

GSTs is their ability to metabolize and inactivate anti-

cancer agents. Increasingly, however, other aspects of

GST biology, such as their regulation and their non-

enzymatic functions are being shown to be major com-

ponents of the mechanisms underlying the role of GSTs

in cancer (Figure 1). Single gene, and more recently,

multigene analyses of GSTs are also providing important

insights into their involvement in tumor progression and

clinical outcome of cancer therapy. The inconsistencies in

some of the results of the correlative studies conducted to

date on the role of GSTs in cancer reflect both the

complexity of this role of GSTs and the somewhat sim-

plistic approaches taken in many of the studies. The

evidence to date suggests that several factors should be

taken into consideration in the interpretation of the

results of studies of the role of GSTs in clinical outcome

in cancer. These include not only the level of GST

expression in the tumor and the GST genotype of the

patient but also other factors, such as, the extent of GST

phosphorylation, the levels of expression and/or activity

of kinases, such as, PKA PKC, and EGFR, that phosphor-

ylate the GSTs, the nature of the treatment regimen and

the tumor type. Other relevant factors include the status

of other GSTP1 interacting proteins, the methylation

status of the GST gene and mutational status of genes,

such as, p53 that can transcriptionally activate GST

genes. There is intense ongoing research in all these

areas of GST biology in cancer. The results should

provide better insights into the clinical relevance and

role of this important superfamily of genes in cancer. This

should facilitate a more rational incorporation of the

results of their expression and polymorphisms in both

the management of the cancer patient, and the devel-

opment of novel GST-targeted cancer therapeutics.
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